
Devoxx University:
Performance Methodology

Aleksey Shipilev
Java Performance

Oracle

@shipilev

Kirk Pepperdine
Java Performance

Kodewerk

@kcpeppe

Aleksey Shipilev

Speaker Bio
■ 7+ years of (Java) Performance
■ 3 years at Intel
■ 4 years at Sun/Oracle

Projects
■ Apache Harmony
■ Oracle/OpenJDK
■ SPECjbb201x
■ https://github.com/shipilev/

https://github.com/shipilev/

Kirk Pepperdine

Speaker Bio
■ 15 year Performance tuning across many industries
■ Background in super and exotic computing platforms

■ Helped found www.javaperformancetuning.com
■ Developed Java performance seminar (www.kodewerk.com)
■ Member of Java Champion program, Netbeans Dream Team
■ Recently founded JClarity,
■ a company who's purpose is to redefine performance tooling
■ Invite you to join Friends of JClarity (www.jclarity.com)

http://www.javaperformancetuning.com/
http://www.jclarity.com/

Java Performance Tuning
Chania (Crete) Greece
June 25, 2012

The resemblance of any opinion,
recommendation or comment made
during this presentation to
performance tuning advice is
merely coincidental.

#include <disclaimer.h>

Measure Don't Guess

■ Hypothesis free investigations
■ Progress through a series of steps to arrive at a conclusion

Introduction

Computer Science →
Software Engineering
■ Way to construct software

to meet functional
requirements

■ Abstract machines
■ Abstract and composable,

“formal science”

Software Performance
Engineeering
■ “Real world strikes back!”
■ Researching complex

interactions between
hardware, software, and
data

■ Based on empirical evidence

Benchmarking

Experimental Setup

You can't go any further without the
proper test environment

■ Relevant: reproduces the phenomena
■ Isolated: leaves out unwanted effects
■ Measurable: provides the metrics
■ Reliable: produces consistent result

"Piled Higher and Deeper" by Jorge Cham
www.phdcomics.com

Relevant and Isolated

■ Hardware
■ Production like
■ Phantom bottlenecks

■ Quiet
■ Software
■ Test harness
■ Load injector and acceptor

■ Data
■ Production like in volumes and veracity

Measurable and Reliable

■ Usage Patterns
■ Describes load
■ Use case + number of users and transactional rates,

velocity
■ Performance requirements
■ Trigger metric is most likely average response time

■ Validation
■ Test the test!
■ Make the sure your bottleneck isn't in the test harness!

Performance Testing Steps

■ Script usage patterns into a load test
■ Install/configure application to the same specs as production
■ Setup monitoring

■ Performance requirements
■ OS performance counters and garbage collection

■ Kill everything on your system
■ Spike test to ensure correctness
■ Load test
■ Validate results
■ Repeat as necessary

Demo 1

Introducing the test

Metrics

Throughput
(Bandwidth)
■ How many operations are

done per time unit?
■ Have many forms: ops/sec,

MB/sec, frags/sec
■ Easiest to measure
■ Easiest to interpret

Time
(Latency)
■ How much time one

operation took?
■ Targets many things:

latency, response time,
startup time

■ Generally hard to measure
(reliably)

Bandwidth vs. Latency

Source: upcoming SPECjbb2013

Little's Law

The nice artifact of the queuing theory

L = λτ
L: number of outstanding requests, concurrency level

λ: throughput

τ: service time

Implications:
■ Under the same L, λ is inversely proportional to τ
■ Under known λ and τ, you can infer the L

Pop Quiz

Imagine the application with two distinct phases
■ Part A takes 70% of time, potential speedup = 2x
■ Part B takes 30% of time, potential speedup = 6x
■ Which one to invest in?

70 sec 30 sec

Pop Quiz

Imagine the application with two distinct phases
■ Part A takes 70% of time, potential speedup = 2x
■ Part B takes 30% of time, potential speedup = 6x
■ Which one to invest in?

70 sec 30 sec

70 sec 5

35 sec 30 sec

Optimize B:

Optimize A:

Ahmdal's Law

We can generalize this observation as:

Ahmdal's Law Limits Speedups

Applying Ahmdal's Law

Imagine the application with two distinct phases
■ Part A takes 70% of time, potential speedup = 2x
■ Part B takes 30% of time, potential speedup = 6x
■ Which one to invest in?

70 sec 30 sec

70 sec 5

35 sec 30 sec

Optimize B:

Optimize A:

+33%

+53%

Where Ahmdal's Law Breaks Down

Composability
■ Given two functional blocks, A and B
■ The difference with executing (A seq B) or (A par B)?

Functional-wise:
■ Result(A seq B) == Result(A par B)
■ “Black box abstraction”

Performance-wise:
■ Performance(A seq B) ??? Performance(A par B)
■ No one really knows!

Demo 2

Ensure test is reliable

Generational Counts

Generational Counts (2)

How to speed up the application?

Change something somewhere in some specific way!

How to speed up the application?

Change something somewhere in some specific way!

How to speed up the application?

Change something somewhere in some specific way!

■ What?

■ Where?

■ How?

How to speed up the application?

Change something somewhere in some specific way!

■ What prevents the application to work faster?

■ Where it resides?

■ How to change it to stop messing with performance?

How to speed up the application?

Change something somewhere in some specific way!

■ What prevents the application to work faster?
Courage, experience, and monitoring tools

■ Where it resides?
Courage, experience, and profiling tools

■ How to change it to stop messing with performance?
Courage, experience, your brain, and your favorite IDE

Top-Down Approach (classic)

System Level
■ Network, Disk, CPU/Memory, OS

Application Level
■ Algorithms, Synchronization, Threading, API

Microarchitecture Level
■ Code/data alignment, Caches, Pipeline stalls

Top-Down Approach (Java)

System Level
■ Network, Disk, CPU/Memory, OS

JVM Level
■ GC, JIT, Classloading

Application Level
■ Algorithms, Synchronization, Threading, API

Microarchitecture Level
■ Code/data alignment, Caches, Pipeline stalls

+ Iterative Approach

■ Start new phase when functional tests are passed
■ Single change per cycle
■ Document the changes

System
Level

System Level (CPU)

The entry point is CPU utilization!
■ Then, you have multiple things to test for
■ Depending on sys%, irq%, iowait%, idle%, user%
■ Need tools to examine each particular branch

Demo 3

First dive into the monitoring

System Level (sys%)

Not particularly the application code fault
■ Most obvious contender is network I/O
■ Then, scheduling overheads
■ Then, swapping
■ Then, in minor cases, other kernel

System Level (sys%, network)

One of the major contributors to sys%
■ In many cases, hardware/OS configuration is enough
■ In other cases, application changes might be necessary

System Level (sys%, scheduling)

The symptom of the unbalanced threading
■ Lots of voluntary context switches (thread thrashing)
■ Lots of involuntary context switches (over-saturation)

System Level (sys%, swapping)

Swapping is the killer for Java performance
■ The target is to avoid swapping at all costs
■ Swapping out other processes to save the memory is good

System Level (sys%, other)

Sometimes kernel is your enemy
■ Unusual API choices from the JVM and/or application
■ (Un)known bugs

System Level (irq%, soft%)

Usual thing when interacting with the devices
■ Sometimes IRQ balancing is required
■ Sometimes IRQ balancing is expensive

System Level (iowait%)

Expected contributor with disk I/O
■ Watch for disk activity
■ Watch for disk throughput
■ Watch for disk IOPS

System Level (iowait%, disk)

Is that amount of I/O really required?
■ Caching, bufferization are your friends
■ More (faster) disks can solve throughput/IOPS problems

System Level (iowait%, caches)

More caching helps?
■ Reduce other physical memory usages, free up for caches
■ Trade in performance over consistency

Demo 4

Fixing the iowait problem → next step

System Level (idle%)

There are resources, but nobody uses them?
■ This is admittedly easy to diagnose
■ ...and very easy to miss

System Level (idle%, threads)

Running low-threaded applications on manycore hosts
■ The signal for you to start parallelizing
■ Or, reduce the number of available HW strands

System Level (idle%, threads)

There are not enough threads ready to run
■ Locking?
■ Waiting for something else?

System Level (idle%, GC)

Very rare, and surprising case
■ Application is highly threaded
■ GC is frequently running with low thread count
■ The average CPU utilization is low

Demo 5

Fixing the idle problem → next step

Application/
JVM Level

Application Level (user%)

Application/JVM is finally busy
■ This is where most people start
■ This is where profilers start to be actually useful

Application Level (Memory)

Memory
■ The gem and the curse of von-Neumann architectures
■ Dominates most of the applications (in different forms)

Application Level (TLB)

TLB
■ Very important for memory-bound workloads
■ “Invisible” artifact of virtual memory system

Application Level (Caches)

CPU caches: capacity
■ Important to hide memory latency (and bandwidth) issues
■ Virtually all applications today are memory/cache-bounded

Application Level (Caches)

CPU Caches: coherence
■ Inter-CPU communication is managed via cache coherence
■ Understanding this is the road to master the communication

Application Level (Bandwidth)

Memory Bandwidth
■ Once caches run out, you face the memory
■ Dominates the cache miss performance
■ Faster memory, multiple channels help

Demo 6

Solving the concurrency problem → next step

Coherence: Primitives

Plain unshared memory

Plain shared memory
■ Provide communication

Volatile
■ All above, plus visibility

Atomics
■ All above, plus atomicity

Atomic sections
■ All above, plus group atomicity

Spin-locks
■ All above, plus mutual exclusion

Wait-locks
■ All above, plus blocking

sp
e
e
d

p
o
w

e
r

Coherence: Optimistic Checks

It is possible at times to make an optimistic check
■ Fallback to pessimistic version on failure
■ The optimistic check has less power, but more performant

AtomicBoolean isSet = ...;
if (!isSet.get() &&
 isSet.compareAndSet(false, true) {
 // oneshot action
}

Coherence: Optimistic Checks

It is possible at times to make an optimistic check
■ Fallback to pessimistic version on failure
■ The optimistic check has less power, but more performant

ReentrantLock lock = ...;
int count = LIMIT;
while (!lock.tryLock()) {
 if (count++ > 0) {
 lock.lock();
 break;
 }
}

Coherence: Striping

It is possible at times to split the shared state
■ Much less contention on modifying the local state
■ The total state is the superposition of local states

Example: thread-safe counter
■ synchronized { i++; }
■ AtomicInteger.inc();
■ ThreadLocal.set(ThreadLocal.get() + 1);
■ AtomicInteger[random.nextInt(count)].inc();

Coherence: No-coherence zone

If you can remove the communication, do that!
■ Immutability to enforce
■ Thread local states

Example: ThreadLocalRandom @ JDK7
■ Random: use CAS to maintain the state
■ ThreadLocalRandom: essentially, ThreadLocal<Random>
■ Can use plain memory ops to maintain the state

Coherence: (False) Sharing

Communication quanta = cache line
■ 32 – 128 bytes long
■ Helps with bulk memory transfers, cache architecture
■ Coherence protocols working on cache lines

False Sharing
■ CPUs updating the adjacent fields?
■ Cache line ping-pong!

...][AABB][...

Demo 7

Diagnosing with allocation profiles

JVM Level

JVM is the new abstraction level
■ Interacts with the application, mangles into application
■ JVM performance affects application performance

JVM Level (GC)

GC
■ Most usual contender in JVM layer
■ Lots of things to try fixing (not covered here, see elsewhere)

JVM Level (JIT)

JIT
■ Very cool to have your code compiled
■ Sometimes it's even cooler to get the code compiled better

JVM Level (Classload)

Classload
■ Important for startup metrics; not really relevant for others
■ Removing the loading obstacles is the road to awe

Demo 8

Fixing the allocation problem

Application Level

Application level
■ In many, many cases, silly oversights in algorithms use
■ Cargo cult of approaches, patterns, code reuse

Application Level (Algos)

Algorithmic Complexity
■ Figuring out the straight-forward code has huge complexity
■ Sometimes, the low-O code is slower than high-O code

Application Level (Caching)

Application Caching
■ Seems to be the answer to most performance problems?
■ In fact, blows up the footprint, heap occupancy, etc

Application Level (Busy-waits)

Application Busy-Waits
■ The natural instinct: blocked waits (with helping)
■ For latency-oriented: busy-waits are profitable

Demo 9

Analyzing with execution profiles

uArch Level (CPU)

CPU
■ Most applications are not getting here
■ A very simple capacity problem

uArch Level (CPU, frequency)

CPU Frequency
■ Exception: affects the memory/speculating performance
■ How many servers out there are running with “ondemand”?

uArch Level (CPU, EU)

CPU, Execution Units
■ Heavily-threaded hardware shares the CPU blocks
■ Easy to run out of specific units with the homogeneous work

uArch Level (CPU, ILP)

Instruction Level Parallelism
■ CPUs speculate aggressively
■ Exposing less dependencies in the code help to speculate

Closing
Thoughts

Q&A

Definitions

Utilization = how busy the resource is?

Idle = how free the resource is?

Definitions

Efficiency = How much time is spent doing useful work?
■ Not really possible to measure
■ High Utilization != High Efficiency

A

B

Definitions

SpeedUp = A is N times faster than B means:

Definitions

%Boost = A is P% faster than B means:

Definitions

Performance
= Scalar Field in Config Space

Scalability
= Gradient of PSF

Resource Scalability
= specific component in SC vector

P :K n →ℝ

S=∇ P

Si=
∂P
∂ Ri

source: http://en.wikipedia.org/wiki/Gradient

http://en.wikipedia.org/wiki/Gradient

Optimization Task

The configuration space can be humongous
■ You don't want to traverse it all
■ Or, you do want to exhaustive search if space is small

Random walks are inefficient
■ Need to estimate the gradient in all N dimensions
■ Means 2*N experiments per each step

Local estimates to rescue!
■ Can predict if P would grow, should we add specific resource
■ This is where the bottleneck analysis steps in

First step (mistakes)

We frequently hear:
■ “I see the method foo() is terribly inefficient, let's rewrite it”
■ “I see the profile for bar() is terribly high, at 5%, let's remove it”
■ “I think our DBMS is a slowpoke, we need to migrate to [buzzword]”

Correct answer:
■ Choose the metric!
■ Make sure the metric is relevant!
■ Your target at this point is improving the metric

Second step mistakes

“I can see the method foo() is terribly inefficient, let's
rewrite!”
■ ...what if the method is not used at all
■ …what if it accounts for just a few microseconds of time
■ ...what if it does account for significant time, but...

Actually, not a bad idea
■ ...as the part of controlled experiment
■ ...if the changes are small, isolated, and painless to make

Second step mistakes

“I can see the method bar() accounts for 5% of time,
let's remove it!”
■ …what if the CPU utilization is just 6.25%?
■ ...what if this method pre-computes something reused later?
■ ...what if this method is indeed problematic, but...

Second step mistakes

“I think our database is the problem! Let's migrate to
[buzzword]!”
■ …what if the you just depleted the disk bandwidth?
■ ...what if your IT had shaped the network connection?
■ ...what if your poor database just needs a cleanup?
■ ...what if the database is indeed the bottleneck, but...

TLBs Detailed

Virtual memory operates on virtual addresses
■ But hardware needs physical addresses to access memory
■ Needs virtual → physical translation
■ Tightly cooperates with OS (walks through page tables)

Extreme cost to do a single translation
■ Happens on each memory access
■ Let's cache the translated addresses!
■ TLB = Translation Look-aside Buffer
■ Granularity: single memory page

TLB caches should be ultra-fast → TLBs are very small
■ The solution is the other way around: larger pages

