Shenandoah GC

Version 2.0 (2019): The Great Revolution

Aleksey Shipilév

shade@redhat.com
@shipilev

Safe Harbor / Tuxaa N'aBaHb

Anything on this or any subsequent slides may be a lie. Do
not base your decisions on this talk. If you do, ask for
professional help.

Bcé uto yrogHO Ha 3TOM cnaije, Kak 1 Ha BCex CiefyoLnx,
MOXeT 6bITb BpaHbEM. He npvHUMaliTe peLlleHunin Ha
OCHOBaHMWM 3TOro Aoknaga. Ecav Bcé-Takm pewunte NpUHSATD,
TO HallMUTe NpodpeccnoHanos.

O rednat

Basics

Basics: OpenJDK GCs Landscape

O rednat

Basics: OpenJDK GCs Landscape

Young GC

Old GC

Serial, Parallel:

Copy

Mark

Compact

O rednat

Basics: OpenJDK GCs Landscape

Young GC Old GC

Serial, Parallel:

Copy Mark Compact
CMS:
Still a pause :(Sopy Concurrent Mark I Conc. Sweep Does not solve
e . Init Mark Finish Mark et - fragmentation :(

Q redhat

Basics: OpenJDK GCs Landscape

Still a pause :(

Smaller, adjustable,
but still a pause :(.,

Young GC

Old GC

Serial, Parallel:

Copy Mark Compact
CMS:

Copy Concurrent Mark I Conc. Sweep
------- Init Mark Finish Mark
GI1:

Copy Concurrent Mark Compact
-------- Init Mark Finish Mark h

Does not solve
. fragmentation :(

Smaller, adjustable,
but still a pause :(

Q rednat

Basics: OpenJDK GCs Landscape

Young GC

Old GC

Serial, Parallel:

Copy Mark Compact
CMS:
Still a pause :(Sopy Concurrent Mark I Conc. Sweep
S . Init Mark Finish Mark e
G1:
Smaller, adjustable, Copy Concurrent Mark Compact
but still a pause :(., =] =
-------- ° Init Mark Finish Mark
Shenandoah, ZGC:
Concurrent Mark I Conc. Compact

Init Mark

Finish Mark

Does not solve
. fragmentation :(

Smaller, adjustable,
but still a pause :(

Q rednat

Basics: Concurrent GC Only For Large Heaps?

O rednat

Basics: Concurrent GC Only For Large Heaps?

Latencyg, = a x Sizepeqp ¥ MemRe f s, * MemLatencyy,

Heap size collected End-to-end
per GC cycle, memory latency,
MB ns/access
Memory references
during STW,
accesses/MB

O rednat

Basics: Concurrent GC Only For Large Heaps?

Latencys,, components
Observation || a * Stz€peqp \ MemRe f 54 \ MemLatencyg,

Large heap ™ \ W \ ~

m Large heap: large live data sets = need concurrent GC

Q rednat

Basics: Concurrent GC Only For Large Heaps?

Latencys,, components

Observation a * Si2€heap \ MemRe f st \ Mem Latencyg,
Large heap ™) 2
Slow hardware =~ s ™

m Large heap: large live data sets = need concurrent GC
m Slow hardware: memory is slow = need concurrent GC

Q rednat

Basics: Slow Hardware
Raspberry Pi 3, AArch64, running springboot-petclinic:

-XX:+UseShenandoahGC

Pause Init Mark 8.991ms

Concurrent marking 409M->411M(512M) 246.580ms
Pause Final Mark 3.063ms

Concurrent cleanup 411M->89M(512M) 1.877ms

-XX:+UseParallelGC
Pause Young (Allocation Failure) 323M->47M(464M) 220.702ms

-XX:+UseG1GC
Pause Young (Gl Evacuation Pause) 410M->38M(512M) 164.573ms

Q rednat

Basics: Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Dev follows latest DK, backports to 13, 11u, 8u

m 8u backport ships in RHEL 7.4+, Fedora 24+

m 11u backport ships in Fedora 27+

m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q rednat

https://wiki.openjdk.java.net/display/shenandoah/

Basics: Shenandoah 2.0

Major differences from older talks:
1. Load reference barriers
2. Elimination of separate fwdptr slot
3. Extended platform support

Q rednat

Basics: Shenandoah 2.0

Major differences from older talks:
1. Load reference barriers
2. Elimination of separate fwdptr slot
3. Extended platform support

Status:
m InJDK 13 GA
m InJDK 11.0.5+ Red Hat dowstreams

m Backporting to JDK 8u is in progress
(Shenandoah 1.0 is there already)

Q rednat

Basics: This Message Is Brought To You By

E fﬁﬁ m IMHO, discussing the gory GC
GARBAGE COLLE N i i i

ANOROD details W|'§hout «GC Handbook» is a
The Art of Automatic Memoi :m'a(, 2 " Wa Ste Of tlme

m Many GCs appear super-innovative,
but in fact they reuse (or reinvent)
ideas from the GC Handbook

m Combinations of those ideas give
rise to many concrete GCs

Q rednat

Overview

Overview: Heap Structure

Shenandoah is a regionalized GC:
heap split into equally-sized regions

m Heap organization is similar to G1
m Collects most garbage regions first
m Not generational (yet), single heap
m Requires little auxiliary metadata

Q redhat

Overview: Usual GC Cycle

Application active

Q redhat

Overview: Usual GC Cycle

N
Concurrent mark I
Application active Application active

Init Mark Final Mark

1. Concurrent marking

Q redhat

Overview: Usual GC Cycle

Concurrent mark I Concurrent evacuation

Application active Application active
Init Mark Final Mark

Application active

1. Concurrent marking
2. Concurrent evacuation

Q redhat

Overview: Usual GC Cycle

Concurrent mark

Concurrent evacuation

Concurrent update refs

Application active

Application active

Final Mark

1. Concurrent marking
2. Concurrent evacuation
3. Concurrent update references (optional)

Application active

Application Active
Final-UR

Q redhat

Overview: Usual GC Cycle

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active Application active Application active Application Active | Application Active
Init Mark Final Mark Init-UR Final-UR

1. Concurrent marking
2. Concurrent evacuation

3. Concurrent update references (optional)
Qredhat

Overview: Usual GC Log

LRUFragger, 100 GB heap, ~ 80 GB live data:

Pause Init Mark 0.227ms

Concurrent marking 84864M->85952M(102400M) 1386.157ms

Pause Final Mark 0.806ms

Concurrent cleanup 85952M->85985M(102400M) 0.176ms

Concurrent evacuation 85985M->98560M(102400M) 473.575ms

Pause Init Update Refs 0.046ms

Concurrent update references 98560M->98944M(102400M) 422.959%ms
Pause Final Update Refs 0.088ms

Concurrent cleanup 98944M->84568M(102400M) 18.608ms
Q rednat

Overview: Usual GC Log

LRUFragger, 100 GB heap, ~ 80 GB live data:

Pause Init Mark 0.227ms

Concurrent marking 84864M->85952M(102400M) 1386.157ms

Pause Final Mark 0.806ms

Concurrent cleanup 85952M->85985M(102400M) 0.176ms

Concurrent evacuation 85985M->98560M(102400M) 473.575ms

Pause Init Update Refs 0.046ms

Concurrent update references 98560M->98944M(102400M) 422.959%ms
Pause Final Update Refs 0.088ms

Concurrent cleanup 98944M->84568M(102400M) 18.608ms
Q rednat

Phases

Mark: Usual GC Cycle

N
Concurrent mark I
Application active Application active

Init Mark Final Mark

1. Concurrent marking

Q redhat

Mark: Reachability

To catch a garbage, you have to thinklike-a garbage

know if there are references to the object

Q rednat

Mark: Reachability

To catch a garbage, you have to thinklike-a garbage

know if there are references to the object

Three basic approaches:
1. No-op: ignore the problem (see: Epsilon GC)

Q rednat

Mark: Reachability

To catch a garbage, you have to thinklike-a garbage

know if there are references to the object

Three basic approaches:
1. No-op: ignore the problem (see: Epsilon GC)

2. Reference counting: track the number of
incoming refs, treat RC=0 as garbage

O rednat

Mark: Reachability

To catch a garbage, you have to thinklike-a garbage

know if there are references to the object

Three basic approaches:
1. No-op: ignore the problem (see: Epsilon GC)

2. Reference counting: track the number of
incoming refs, treat RC=0 as garbage

3. Tracing: walk the object graph, find reachable
objects, treat everything else as garbage

Q rednat

Mark: Three-Color Abstraction

Assign colors to the objects:
1. White: not yet visited
2. Gray: visited, but references are not scanned yet
3. Black: visited, and fully scanned

O rednat

Mark: Three-Color Abstraction

Assign colors to the objects:
1. White: not yet visited
2. Gray: visited, but references are not scanned yet
3. Black: visited, and fully scanned

Daily Blues:
«All the marking algorithms do is
coloring white gray, and then coloring gray black»

Slide 18/152. «Shen3 ‘ redhat

Mark: Stop-The-World Mark

O

When application is stopped, everything is trivial!
Nothing messes up the scan...
Oredhat

Mark: Stop-The-World Mark

O

Found all roots, color them Black,
because they are implicitly reachable
Oredhat

Mark: Stop-The-World Mark

O

References from Black are now Gray,
scanning Gray references
Oredhat

Mark: Stop-The-World Mark

g

Finished scanning Gray, color them Black;
new references are Gray
Oredhat

Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
Oredhat

Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
Oredhat

Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
Oredhat

Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
‘redhat

Mark: Stop-The-World Mark

g

Finished: everything reachable is Black;
all garbage is White
‘redhat

Concurrent Mark: Mutator Problems

With concurrent mark
everything gets complicated:
the application runs and
actively mutates the object
graph during the mark.

We contemptuously call it
mutator because of that.

Q rednat

Concurrent Mark: Mutator Problems

s

Wavefront is here,
and starts scanning the references in Gray object...

O redhat

Concurrent Mark: Mutator Problems

>.O
*

*

*

*

Mutator removes the reference from Gray...
and inserts it to Black!
Oredhat

Concurrent Mark: Mutator Problems

ol
*
*
*
*

...or mutator inserted the reference to
transitively reachable White object into Black

O redhat

Concurrent Mark: Mutator Problems

...or mutator inserted the reference to
transitively reachable White object into Black

O redhat

Concurrent Mark: Mutator Problems

Mark had finished, and boom: we have reachable White
objects, which we will now reclaim, corrupting the heap

O redhat

Concurrent Mark: Mutator Problems

new

Another quirk: created new new object,
and inserted it into Black
Oredhat

Concurrent Mark: Textbook Says

There are at least three approaches to
solve this problem. All of them require
intercepting heap accesses. Short on time,
we shall discuss what G1 and Shenandoah
are doing today.

O rednat

Concurrent Mark: SATB

oot

O’OO<—C>

Color all removed referents Gray

O redhat

Concurrent Mark: SATB

o st

O’OO<—C>

Color all new objects Black

O redhat

Concurrent Mark: SATB

oot

0‘0@—6

Finishing...

O redhat

Concurrent Mark: SATB

,. ‘
0. :
* .
o -
* []
*
| i i
new

Done!

O redhat

Concurrent Mark: SATB

* |
*
*
*
*
*
*
*
*
new

«Snapshot At The Beginning»:
marked all reachable at mark start

O redhat

Concurrent Mark: SATB Writes (pseudocode)

O rednat

Concurrent Mark: SATB Writes (pseudocode)

void WriteWithSATB(Obj* loc, 0Obj val):
// SATB write pre-barrier:
if (HEAP->is_marking()): // check thread-local flag
Obj old = *loc; // read old value
if (old !'= NULL):
// put the value in buffer
THREAD->addToSATBBuffer(old) ;
// maybe deliver full buffer to GC
THREAD->maybeFlushSATBBuffer () ;

// Barrier ts dome. Do the actual write:
*loc = val;

Q rednat

Concurrent Mark: SATB Barrier (inline)

check if we are marking
testb 0x2, 0x20(%r1b)
jne OMG-MARKING

BACK:

... actual store follows ...

somewhere much later
OMG-MARKING:

tens of instructions that add old value
to thread-local buffer, check for overflow,
call into VM slowpath to process the buffer

jmp BACK

Q redhat

Concurrent Mark: Two Pauses’

Init Mark: stop the mutator to avoid races
1. Walk and mark all roots
2. Arm SATB barriers

Final Mark: stop the mutator to avoid races
1. Drain the thread buffers
2. Finish work from buffer updates

'These can actually be fully concurrent, but that is not very practical today @ rednat

Concurrent Mark: Two Pauses’

Init Mark: stop the mutator to avoid races
1. Walk and mark all roots < most heavy-weight
2. Arm SATB barriers

Final Mark: stop the mutator to avoid races
1. Drain the thread buffers
2. Finish work from buffer updates +— most heavy-weight

"These can actually be fully concurrent, but that is not very practical today @ redrat

Concurrent Mark: Barriers Cost?

Throughput hit, %

A?; Cps

Cry
Der
Mpg
Smk
Ser
Xml

2performance compared to STW Shenandoah with all barriers disabled @ redrat

Concurrent Mark: Barriers Cost?

Throughput hit, %
SATB
N Cmp -2.1
?i Cps €
Cry €
Der -1.7
Mpg €
Smk -0.8
Ser -1.6
Xml -2.4

2performance compared to STW Shenandoah with all barriers disabled @ redrat

Concurrent Mark: Observations K8 §

1. Extended concurrency needs to pay with more barriers

m Ideal STW GC beats ideal concurrent GC on pure throughput
m Unless there are spare CPUs to offload the concurrent GC

Q rednat

Concurrent Mark: Observations K8 §

1. Extended concurrency needs to pay with more barriers

m Ideal STW GC beats ideal concurrent GC on pure throughput
m Unless there are spare CPUs to offload the concurrent GC

2. Hiding references from mark prolongs final mark pause

m Weak references with unreachable referents, finalizers
m «Old» objects hidden in SATB buffers

Q rednat

Concurrent Mark: Tips

1. High load, don't care about pauses? Prefer STW GC!

= No need to pay for concurrency when you cannot exploit it
m Empty GC log does not mean no GC overhead

Q rednat

Concurrent Mark: Tips Q20

1. High load, don't care about pauses? Prefer STW GC!

= No need to pay for concurrency when you cannot exploit it
m Empty GC log does not mean no GC overhead

2. #objects and #references define conc mark performance

m Flatter object graphs are quicker to walk
m Primitive fields/arrays are no-brainer for GC
m Generally, lots of references is tolerable when parallelisable

Q rednat

Concurrent Mark: Tips Q20

1. High load, don't care about pauses? Prefer STW GC!

= No need to pay for concurrency when you cannot exploit it
m Empty GC log does not mean no GC overhead

2. #objects and #references define conc mark performance
m Flatter object graphs are quicker to walk
m Primitive fields/arrays are no-brainer for GC
m Generally, lots of references is tolerable when parallelisable

3. Long chains of references hurt tracing GCs
m Long linked lists are GC nemesis: unparallelisable
m Arrays (and derivatives, e.g. hash tables) are perfect
m Trees seem to be the sane middle ground

Q rednat

Evac: Usual GC Cycle

Concurrent mark I Concurrent evacuation

Application active Application active
Init Mark Final Mark

Application active

1. Concurrent marking
2. Concurrent evacuation

Q redhat

Evac: Stop-The-World

Problem:
there is the object, the
object is referenced

from somewhere, need
: to move it to new
o . ' location

space ' space
:

Q redhat

Evac: Stop-The-World

Step 1: Stop The World,
: evasive maneuver to
distract mutator from
P, looking into our mess

"From" Ton
'

space ' space
'

Q redhat

Evac: Stop-The-World

Step 2:
Copy the object with all
its contents

"From® z=3 REEEEEEEEEET ’ z=3 Tor
space ' space

Q rednat

Evac: Stop-The-World

Step 3.1:
: 5 ,- Update all references:
Forwarding REEEEETEEEE] .
Pra IS SN save the pointer that
e WU SV forwards to the copy
"From® z=3; ’ z=3 Tor
Sspace E space

Q redhat

Evac: Stop-The-World

Step 3.2:
Update all references:

Forwarding ----...e Walk the heap, replace
SR B g all refs with fwdptr
y=2 = [ressssssaaaas ’ y=2 dest”‘]ation
"From" z=3 -------: ----- ’ z=13 .y
space : space

Q rednat

Evac: Stop-The-World

Step 3.2:
: Update all references:
—— f walk the heap, replace
¥ f . all refs with fwdptr
PP U SV p destination
“Erom® 2=3 SR RN 2=3 o

Q redhat

Evac: Stop-The-World

Everything is fine in the
world, set the mutators
free! Done!

"From® Tor
space H space
:

Q rednat

Concurrent Evac: Mutator Problems

With concurrent
copying everything
& gets is significantly
- harder: the application
® Z AL writes into the objects
W g N WS while we are movin

kAN VS h the same objects!g

Hem cmbicna onuceleame npoucxoamuee,
noamomy Hanuwy: "Y Hac 8cé xopowo”..

Vernars. Dashe

http://vernova-dasha.livejournal.com/77066.html

Q rednat

http://vernova-dasha.livejournal.com/77066.html

Concurrent Evac: Mutator Problems

While object is being
moved, there are two

ceererbeeans copies of the object,
T U SV and both are
PP ISR SV reachable!
o s :
e : coace

Q rednat

Concurrent Evac: Mutator Problems

"From"
space

space

Thread A writes y =4
to one copy, and
Thread B writes x = 5
to another. Which copy
is correct now, huh?

Q redhat

Concurrent Evac: Load Reference Barriers

Idea:
If we need to copy
objects, do it before

space

forvardng _ feeveeeteeees any use. Let application

e R i« I act when loading the

e R s I object (when loading
— Sz """ = o reference to it)

O rednat

Concurrent Evac: Load Reference Barriers

el

NGorwarang | If copy exists:
— X =5 Resolve it and use it
ST TR RN e

"From" e > z=3 on

Q redhat

Concurrent Evac: Load Reference Barriers

If copy does not
: exist: Can read/write
from the current copy?
- Problematic...

"From® o
space H space
:

Q redhat

Concurrent Evac: Load Reference Barriers

Copy ourselves: make
sure every access is
done to actual copy.

N S [Agree on which copy is

> i actual by changing the
G R g I forwarding atomically
“From® > o > z=3 o
spac : space

O redhat

Concurrent Evac: Load Reference Barriers

Forwarding

>

>

>

space

After GC did its work
updating the
references, we can
recycle the old objects,
along with forwarding
pointers

Q redhat

Load Ref Barrier: Motivation

el

FonNardln

X =05

~, .

space

To-space invariant:
Writes should happen
in to-space only,
otherwise they are lost
when cycle is finished

Q redhat

Load Ref Barrier: Pseudocode

Obj ReadWithLRB(Obj* loc):
// Read the reference
Obj obj = *loc

// Load reference barrier:
if (HEAP->has_forwarded_objects()): // single byte
if (HEAP->in_collection_set(obj)): // dense bytemap
if (obj->is_forwarded()): // object header

obj = obj->forwardee()

else:
obj = LRB_Slowpath(loc, obj)

// Barrier is done. Here's our actual object:

Q rednat

return obj

Load Ref Barrier: Fastpath

mov %rl0, ... # Load reference
testb $0x1, 0x20(%r15) # Has forwarded objects?
jne LRB-MIDPATH

BACK:

normal access happens afterwards. ..

somewhere later
LRB-MIDPATH:
mov %rll, %ri10

shr %ri11, 16 # Compute region ID
testb $0, (CSBM, %rll) # Test cset bytemap
je BACK

decode and test fwdptr
...and maybe jump to slowpath

Q redhat

Load Ref Barrier: Slowpath

Obj LRB_Slowpath(Obj* loc, Obj obj):
assert (HEAP->has_forwarded_objects(), "fastpath")
assert (HEAP->in_collection_set(obj), "fastpath")

Obj copy = copy(obj)

// Try to install new copy as actual:
if (obj->cas_forwardee(NULL, copy)):
// success, this is our new copy
return copy
else:
// someone else did it: pick up the result
return obj->forwardee()

Q rednat

Load Ref Barrier: aside, GC Evacuation Code

void GC_Evacuate():
for (Region r : HEAP->collection_set()):
for (Obj obj : r->live_objects()):
if (lobj->is_forwarded()):
// Not copied yet, do tt now:
Obj copy = copy(obj);

// Try to install new copy. Don't care <f fatled.
obj->cas_forwardee (NULL, copy);

Roll over collection set and copy all live objects out.
Skip objects that LRB evacuated itself.

Q rednat

Load Ref Barrier: Barriers Cost?

Throughput hit, %

SATB| LRB

. Cmp -2.1]-11.3
'3 Cps el -9.2
Cry € €

Der -1.7| -5.9

Mpg e|-11.7

Smk -0.8] -1.8

Ser -1.6| -6.0

Xml -2.4|-11.6

2performance compared to STW Shenandoah with all barriers disabled @ redrat

Load Ref Barrier: Observations K8 §

1. Shenandoah needs LRB on every reference load

m The frequency is optimized: optimizers try to avoid heap read
m Pretty much everywhere you expect compressed oops decoding

Q rednat

Load Ref Barrier: Observations K8 §

1. Shenandoah needs LRB on every reference load

m The frequency is optimized: optimizers try to avoid heap read
m Pretty much everywhere you expect compressed oops decoding

2. Passive LRB cost is low

m Single thread-local load and predicted branch
m Still has non-zero costs: instructions, optimizations interference

Q rednat

Load Ref Barrier: Observations K8 §

1. Shenandoah needs LRB on every reference load

m The frequency is optimized: optimizers try to avoid heap read
m Pretty much everywhere you expect compressed oops decoding

2. Passive LRB cost is low

m Single thread-local load and predicted branch
m Still has non-zero costs: instructions, optimizations interference

3. Active LRB cost is moderate

m Most exits from LRB midpath: not in cset or already forwarded
m GC does the bulk of the evacuation work

Q rednat

Update References: Usual GC Cycle

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active Application active Application active Application Active
Init Mark Final Mark Init-UR Final-UR

1. Concurrent marking
2. Concurrent evacuation

3. Concurrent update references (optional)
Qredhat

Update References: GC Code (pseudocode)

void GC_UpdateRefs():
for (Region r : HEAP->regions_snapshot()):
for (Obj obj : r->live_objects()):
for (Obj* loc : obj->fields()):
Obj £ = *loc;
if (f->is_forwarded()):
CAS_raw(loc, f, f->forwardee())

Roll over all live objects,
and update all forwarded references.

Q rednat

Update References: GC Code (pseudocode)

void GC_UpdateRefs():
for (Region r : HEAP->regions_snapshot()):
for (Obj obj : r->live_objects()):
for (Obj* loc : obj->fields()):
Obj £ = *loc;
if (f->is_forwarded()):
CAS_raw(loc, f, f->forwardee())

CAS fails?
= some other store happened
= stored reference already passed LRB
= guaranteed to be the reference to actual copy

Q rednat

Update References: Nasty Corner Case

There are special operations that bypass normal LRB:

Q redhat

Update References: Nasty Corner Case

There are special operations that bypass normal LRB:
arraycopy/clone

m Usually copy raw memory underneath

m Because, performance! Vectorized copy FTW
m Fine for primitive data, catastrophic for Java references

m Can therefore overwrite already updated refs

m Update-refs progress guarantees out of the window
m Unless, we fix up source/destination before/after the copy!

Q rednat

Exotic Barriers: Arraycopy (pseudocode)

void ArraycopyBarrier(Obj* src, Obj* dst,
int beg, int len):
// Fizup before copy:
for (int c¢ : [0, len]):
Obj* loc = (src + beg + c)
Obj elem = *loc
if (elem->is_forwarded()):
CAS_raw(loc, elem, elem->forwardee())

// Do the actual copy of known good stuff
arraycopy(src, dst, deg, len);

Or: «Oh, no LRB for Bender?
Fine, I am going to build my own barrier...»

Q rednat

Exotic Barriers: CAS

atomicRef.compareAndSwap (expV, newV)

: expY = locz LRB makes sure we
AtomicReference never get exposed to

; old copies...

cur = locl

locl:

Fwd Ptr : > Mark Word

"Erom" ; o
space H space
'

O rednat

Exotic Barriers: CAS

"From"
space

atomicRef.compareAndSwap (expV, newV)

expV = loc2

AtomicReference

Fwd Ptr

Mark Word

cur = locl

locl:

Fwd Ptr

> Mark Word

Ton
space

LRB makes sure we
never get exposed to
old copies...

Which breaks when we

do CAS that compares

new copy with old copy
for the same object!

O rednat

Exotic Barriers: CAS Barrier (pseudocode)

bool ConcGC_CAS(Obj* loc, Obj expV, 0bj newV):

// Optimistic attempt:
if (CAS_raw(loc, expV, newV)):
return true;

// False negative? Fiz up:

Obj old = *loc;

if (old->is_forwarded()):
CAS_raw(loc, old, old->forwardee())

// Try again:
return CAS_raw(loc, expV, newV);

Q rednat

Exotic Barriers: Barriers Cost?

Throughput hit, %
SATB | LRB | CAS, AC
. Cmp -2.1]-11.3 €
'3 Cps el -9.2 €
Cry € € €
Der -1.7| -5.9 €
Mpg el -11.7 €
Smk -0.8| -1.8 €
Ser -1.6| -6.0 €
Xml -2.4|-11.6 €

2performance compared to STW Shenandoah with all barriers disabled @ redrat

Exotic Barriers: Observations

1. CAS barriers are important for performance
m Reference CASes are relatively rare
m Most of the time CASes succeed, so fixup is not needed
m When CAS fails, you have larger problem: retries, fallbacks

Q rednat

Exotic Barriers: Observations

1. CAS barriers are important for performance

m Reference CASes are relatively rare
m Most of the time CASes succeed, so fixup is not needed
m When CAS fails, you have larger problem: retries, fallbacks

2. Arraycopy barriers are sometimes critical

m Before or after the actual raw copy blazes through...
m GCwould need to pre/post-handle the reference arrays

Q rednat

Overall: Barriers Cost?

Throughput hit, %
SATB | LRB | CAS, AC | TOTAL
. Cmp -2.1]-11.3 €| -12.9
?; Cps €| -9.2 €| -9.2
Cry € € € €
Der -1.7| -5.9 e| -6.6
Mpg el -11.7 €| -12.7
Smk -0.8| -1.8 €| -2.5
Ser -1.6| -6.0 el -7.5
Xml -2.4|-11.6 €| -13.5

2performance compared to STW Shenandoah with all barriers disabled @ rednat

Overall: Observations K8 §

1. Easily portable across HW architectures

m Special needs: CAS (performance is important, but not critical)
m x86_64 and AArch64 are major implemented targets
m Works with 32-bit arches: x86_32 is done, ARM32 prototyping

Q rednat

Overall: Observations K8 §

1. Easily portable across HW architectures

m Special needs: CAS (performance is important, but not critical)
m x86_64 and AArch64 are major implemented targets
m Works with 32-bit arches: x86_32 is done, ARM32 prototyping

2. Trivially portable across OSes

m Special needs: none
m Linux is a major target, Windows is minor target
m Vendors build and ship Mac OS and Solaris without problems

Q rednat

Overall: Observations K8 §

1. Easily portable across HW architectures

m Special needs: CAS (performance is important, but not critical)
m x86_64 and AArch64 are major implemented targets
m Works with 32-bit arches: x86_32 is done, ARM32 prototyping

2. Trivially portable across OSes

m Special needs: none
m Linux is a major target, Windows is minor target
m Vendors build and ship Mac OS and Solaris without problems

3. VM interactions are simple enough

m Play well with compressed oops: pointers untouched
m CPU-specific things only for «assembler» barriers

Q rednat

Example

Example: Generational Hypotheses

Dying
Probability
7'\

Weak hypothesis:
most objects die young

Weak

» Age

O rednat

Example: Generational Hypotheses

Dying
Probability

y

A

Strong hypothesis:

the older the object,

the less chance it has
to die

Weak Strong

» Age

O rednat

Example: Generational Hypotheses

Dying
Probability
7'\

Strong hypothesis:

the older the object,

the less chance it has
to die

In-memory LRU-like
caches are the prime
counterexamples

» Age

O rednat

Example: LRU, Pesky Workload

Very inconvenient workload for
simple generational GCs

m Early on, many young objects die, and oldies survive:

weak GH is valid, strong GH is valid

m Suddenly, old objects start to die:
weak GH is valid, strong GH is not valid anymore!

m Naive GCs trip over and burn

O rednat

Example: The Simplest LRU

The simplest LRU implementation in Java?

O rednat

Example: The Simplest LRU

The simplest LRU implementation in Java?

cache = new LinkedHashMap<>(size*4/3, 0.75f, true) {
@0verride
protected boolean removeEldestEntry(Map.Entry<> eldest) {
return size() > size;

};

Q rednat

Example: Testing

Boring config:

1. Latest improvements in all GCs: shenandoah/jdk forest
Decent multithreading: 8 threads on 16-thread i7-7820X
Larger heap: -Xmx100g -Xms100g
90% hit rate, 90% reads, 10% writes
Size (LDS) = 0..100% of -Xmx

e W

Varying cache size = varying LDS = make GC uncomfortable

O rednat

Example: Pauses vs. LDS

Pause time, sec (all safepoints)

10!

1 OU

107!

1072

107

107

Live Data Size, % of heap

Parallel \ CMS Shenandoah
\
]
ff..l"'fr' l
'.7.7 e e e e et et 77’.‘._‘7 o
o®
.oo+.o.+o..ﬂ..oi [)
=== e
20 40 60 80 20 40 60 80 1 20 40 60 80 100

Q rednat

Example: Pauses vs. LDS

10!

Pause time, sec (all safepoints)

Parallel \ CMS l Shenandoah
\
.-
N il
Old GC
.oo+.o.+o.....oi [)
=
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Live Data Size, % of heap

Q rednat

Example: Pauses vs. LDS

Parallel \ CMS l Shenandoah
\
10’ gEgEsEE=
. ”"...T” $ No STW

Z 00 .,.,,,t,,,,,,,, 11 | 110
£ ESY ** [Young GC | ¢
= ®
= 107 ——————————— = AR
§ 107
%
St

107

20 40 60 80 100 20 40 60 80 1

Live Data Size, % of heap

Q rednat

Example: Pauses vs. LDS

Pause time, sec (all safepoints)

10!

1 OU

107!

Parallel \ CMS l Shenandoah
\
.....oofrOO
(1) j,,,,,,,,, 11N ’ ,,,TQ.,, 11
T & 3 (]
o®
e0o0e?
HEEP qitnianandiil 11008 o
/’
//
L e
Heap |
Overtoad— - e -
...+...+........ []
| | === e
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Live Data Size, % of heap

Q rednat

Example: Perf vs. LDS

Operation Time, sec

GC Pause Time, %

1806

800
700
600

500
400

300

200

i
70

60
50

100

90

80

70

60

50

40
30

20

10

20

40 60
Live Data Size, % of heap

80

100

gc @ Parallel ® CMS @ Shenandoah

0 20 40 60 80 100
Live Data Size, % of heap

gc @ Parallel ® CMS @ Shenandoah

Q redhat

Example: Perf vs. LDS

Operation Time, sec

GC Pause Time, %

1806

800
700
600

500
400

300

200

i
70

60
50

100
90

-3
Q
[e]
o
)
=

80

|
GC work

acC

Q
)
)

5
2.

70

60
50

40

30
20

10

\

20

gc @ Parallel ® CMS @ Shenandoah

40 60
Live Data Size, % of heap

80

0 20

40 60
Live Data Size, % of heap

80

gc @ Parallel ® CMS @ Shenandoah

Q redhat

Example: Perf vs. LDS

Operation Time, sec
:

GC Pause Time, %

1906

800
700
600

500
400

300

200

~and applicati

appears faster!

100

90
80

\
GC work

acC

70

Q
=
]

3
Q.

60

50
40

30

20
10

\

20 40 60 80 1
Live Data Size, % of heap

gc @ Parallel ® CMS @ Shenandoah

0 20

40 60
Live Data Size, % of heap

80

gc @ Parallel ® CMS @ Shenandoah

Q redhat

Command and Control

Command and Control: Central Dogma

Concurrent GCs are in-background heavy-lifters

m Rely on collecting faster than applications allocate

m Frequently works by itself: threads do useful work, GC
threads are high-priority, there is enough heap to absorb
allocations

m Practical concurrent GCs have to care about unfortunate
cases as well

Q rednat

N

Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat

N

Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat

N

Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat

N

Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat

Command and Control: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Immediates: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7) Total Garbage: 76798M

GC(7) Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

Q redhat

Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms
GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms
GC(7) Total Garbage: 76798M

GC(7) Immediate Garbage: 75072M, 2346 regions (97% of total)

GC(7) Pause Final Mark 0.758ms
GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead

Q rednat

Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7) Total Garbage: 76798M

GC(7) Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead

Q rednat

Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7) Total Garbage: 76798M

GC(7) Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead
3. Cycle shortcuts, because why bother...

Q rednat

Footprint: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Footprint: Shenandoah Overheads

Current Shenandoah does not require
a lot of additional memory!3

m Java heap: no overheads at idle
«+»: and, compressed references are still working
«—»: requires space for evacs when GC cycle is running
m Native structures: marking bitmap, 1/64 of heap
«—»: -Xmx is still not close to RSS
«+»: overhead is bounded: -Xmx100g means ~102 GB RSS max

30lder one required a separate per-object fwdptr, yielding 1.05..1.5x overhead. @ redrat

Footprint: Shenandoah Overheads

Current Shenandoah does not require
a lot of additional memory!3

m Java heap: no overheads at idle
«+»: and, compressed references are still working
«—»: requires space for evacs when GC cycle is running

m Native structures: marking bitmap, 1/64 of heap
«—»: -Xmx is still not close to RSS
«+»: overhead is bounded: -Xmx100g means ~102 GB RSS max

m Surprise: a significant part of footprint story is heap
sizing, not per-object or per-heap overheads
30lder one required a separate per-object fwdptr, yielding 1.05..1.5x overhead. @ redrat

Footprint: Heap Sizing

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

800 rvovprrre LI 0 0 U A A, 0 O 0 10 0 A 0 004 ey e e G;1 """ 2
: Sh i
700 : Sh (compact) :
600 - b
m 500 : :
= : :
w400 - B
% : :
300 - -
200 : :
100 :
Load Idle Full GC Idle :
0 L S S S S Lo e F T T 4

40 60 80 100 120

time, sec

Q rednat

Footprint: Heap Sizing

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

L]

time, sec

Sh (compact)

FullGC

Q redhat

Footprint: Heap Sizing

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

time, sec

Sh (compact)

FullGC

Q redhat

Footprint: Heap Sizing

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

Sh (compact)

time, sec

FullGC

Q redhat

Footprint: Heap Sizing

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

Sh (compact)

time, sec

FullGC

Q redhat

Footprint: Heap Sizing

800 ¢- oy
700 :
600 -
500 -

400 :

RSS, MB

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

Sh (compact)

300 :
200 :

100 ;
tard

0 PRI B

Aggrgssive

Idlel : Load
l20”” I”.l40 lllll
expansion

time, sec

Full GC

Q redhat

Footprint: Heap Sizing

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

800r """ (O L L B A S S BN A S S L e G;'I """ -|
: Sh = | -
700 : Sh (compact) :
600 - >
m 500 : / :
= : :
= 400 - :
3 ; _/ :
T 300: 3
200 : == .
100 'S
tarf Idle Idle Full GC ldle :
0 PN IS S e e FUE S S S T S S YT S 00 S S N S S S S S S e PO S D S S S S S S S 3

20 60 80 100 120

time, sec

0
First uncommit
Qredhat

Footprint: Heap Sizing

RSS, MB

800
700
600

500 :

400

300 -

200

100

0

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

tarf Idle

Sh (compact)

time, sec

Full GC

Q redhat

Footprint: Heap Sizing

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

soogr-- ------ T TR T T TR R e —— S— :
: Sh = | -

700 : Sh (compact)

600 - b

500 :]

400 - :
300 : P
200 : = .
100 / :
tar Idle Load Idle Full GC Idle !
O FRRPEN NS S S S [FORIPRRF N S O SR S S S SR S S 4B DO S S S S S S Lo P 3
0 20 40-/50 80 100 120
Second uncommit time, sec

Q redhat

RSS, MB

Footprint: Heap Sizing

RSS, MB

800 ¢ - -

700
600 -
500 :
400 :
300 -
200 :

100

0

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

Sh (compact)

tard

Load

Full GC

Q redhat

Footprint: CPU Time Tradeoffs

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m
800 ¢+ vy v e T e e e e e e o
: Sh ——
700 : Sh (compact) i
600 * 3

500 : :
400 : :

300 : :

‘\ Idle Load Idle Full GC ldle :

20 40 60 80 100 120
time, sec

Java user CPU, %

200 :

100]

Q rednat

Footprint: CPU Time Tradeoffs

Java user CPU, %

800

700 -

600

500 :

400

300 :
200 :

100

0

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

20

0
Warmups

Idle

Sh (compact)

FH”EC Idle

time, sec

80

¢

100 120

Q rednat

Footprint: CPU Time Tradeoffs

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

BOO £ v v

700 :
600 -
500 -
400 :

300 :

Java user CPU, %

200 :

100 1
tar Idle Load
0 N ettt b 00 N e 4 s s

High footprint, low CPU

A

Idle

Sh (compact)

Full GC
AASAA

Idle

60
time, sec

80

AAtnid

100

120

Q rednat

Footprint: CPU Time Tradeoffs

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m
800 v v v v

__ Sh = | :
700 : Sh (compact)

600 :
500 :
400 :

300 :

Java user CPU, %

200 :

100
tar Idle Load Idle FAull GC Idle
0 NS L L N SR N AmAA

Low footprint, high CPU

60 80 100 120
time, sec

Q rednat

Footprint: CPU Time Tradeoffs

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m
8O0 £ v g vt e L e e "

__ Sh = | :
700 : Sh (compact)

600 :
500 :
400 :

300 :

100
tar Idle Load Idle FAull GC Idle
0 RS L L N AmAA

AAtnid

0 20 40 60 80 100 120

Java user CPU, %

Q rednat

Footprint: Footprint Tips

1. Use GCs that can predictably size the heap
m All current Open)DK GCs have adaptive sizing
m Most of them give back memory reluctantly

N
& 0

Q rednat

Footprint: Footprint Tips

1. Use GCs that can predictably size the heap
m All current Open)DK GCs have adaptive sizing
m Most of them give back memory reluctantly

2. Tune GC for lower footprint

m Configure smaller -Xms and -Xmx
m Tune uncommit delays, periodic GCs
EX.: -XX:ShenandoahGCHeuristics=compact

Q rednat

Footprint: Footprint Tips

1. Use GCs that can predictably size the heap
m All current Open)DK GCs have adaptive sizing
m Most of them give back memory reluctantly

2. Tune GC for lower footprint

m Configure smaller -Xms and -Xmx
m Tune uncommit delays, periodic GCs
EX.: -XX:ShenandoahGCHeuristics=compact

3. Exploit GC and infra improvements

m Java Agents that bash GC with Full GCs on idle
m Modern GCs that recycle memory better
Ex.: Shenandoah (JDK 8+), G1 (JDK 12+), ZGC (JDK 13+)

Q rednat

Footprint: Observations Q20

1. Footprint story is nuanced

m First-order effect: heap sizing policies
m Second-order effects: per-object and per-reference overheads

Q rednat

Footprint: Observations Q20

1. Footprint story is nuanced

m First-order effect: heap sizing policies
m Second-order effects: per-object and per-reference overheads

2. Beware of footprint surprises

m Universal surprise: GCs need free memory to breathe
m G1 surprise: native overhead (much improved in later versions)
m ZGC surprise: no compressed oops (design disadvantage)

Q rednat

Footprint: Observations Q20

1. Footprint story is nuanced

m First-order effect: heap sizing policies
m Second-order effects: per-object and per-reference overheads

2. Beware of footprint surprises
m Universal surprise: GCs need free memory to breathe
m G1 surprise: native overhead (much improved in later versions)
m ZGC surprise: no compressed oops (design disadvantage)

3. Idle footprint seems to be of most interest
m Few adopters (none?) care about peak footprint, but we still do
m Anecdote: I am running Shenandoah with my IDEA and CLion,
because memory is scarce on my puny ultrabook

Q rednat

Pacing: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Pacing: STW GC Control Loop

Pause

Non-allocating thread
Allocating thread .:
* »
-

o~

~ Alloc H

Ll

% Failure : Recycle
. L]
P

Stop-the-world GC

m Once memory is exhausted, perform GC
m Natural feedback loop: STW is the nominal mode

m Not really accessible for concurrent GC?
Qredhat

Pacing: Simple Conc GC Control Loop

Non-allocating thread

Allocating thread HAIIocation Stall
o |4
+ Alloc .
. . = Recycle
» Failure :
1 Y o
! |

Concurrent GC

m Memory is exhausted = stall allocation and wait for GC
m Technically not a GC pause, but still local latency

m AFs usually happen in all threads at once: global latency
Oredhat

Pacing: Shenandoah Control Loop

Non-allocating thread

Pause
Allocating thread) AIIocatlonlpacmg)
Pl Pl B
v n L. »
1 GC T & Alloc R |
: Progress : : j-‘ Failure « ecycle
L L 4 L2 L 4 hd
I >l >l
Concurrent GC with pacing

Degenerated GC

m Incremental pacing stalls allocations a bit at a time
m If AF happens, «degenerates»: completes under STW
m Pacing introduces latency, but the capped one

O rednat

Pacing: Nuclear Option, Pauses

0! Shenandoah | Shenandoah (max pacing)
0 | 8 | |
10 °
o
210 e ——
5
g
5107
£
B
g
s0o++—rt N S I - . .4 . 5 3 38 3 8 80 3 B R
000{..'%0""'0000 o.o%o.. e®0®000epo0e
107 T—Tiff F o T e e e e e —
0 20 40 60 80 100 20 40 60 80 100

Live Data Size, % of heap

Q rednat

Pacing: Nuclear Option, Pauses

Pause time, sec (all safepoints)

10"

10°

107!

Shenandoah | Shenandoah (max pacing)
Nuclear option:
! max pacing
9
LI N\
000{..'%0""'0000 o.o{o..ﬂ\.Ooooooo}ooo
0]; j[60 810 100 20 40 60 80 100

Live Data Size, % of heap

Q rednat

Pacing: Nuclear Option, Times

GC Pause Time, %

Operation Time, sec

1000
900
800

700
600

500
400

300

200

gc @ Shenandoah ® Shenandoah (max pacing

100

90

80

70

60

50

40

30

20
10

20

|
40 60
Live Data Size, % of heap

80

0 20

40 60
Live Data Size, % of heap

80

gc @ Shenandoah @ Shenandoah (max pacing

Q redhat

Pacing: Nuclear Option, Times

Operation Time, sec

GC Pause Time, %

1000
900
800

700
600

500
400

300

200

gc @ Shenandoah ® Shenandoah (max pacing

100

90
80

Pauses

70

are invisible

60

50
40

30

20
10

20

| |
40 60
Live Data Size, % of heap

80

0 20 40 60
Live Data Size, % of heap

80

gc @ Shenandoah @ Shenandoah (max pacing

Q redhat

Pacing: Nuclear Option, Times

Operation Time, sec

GC Pause Time, %

1000
900

e 100
800 —
M Yet'the progres = Pauses
s ¥ M | 80 N o
[is wrecked anyway o are invisible |
300 60 B
% \ i
200 40 \]
30 \
N\
100 20
0 10
70 0— |
60 | ; ; T | | |
20 40 60 80 0 0 20 40 60 80 100

Live Data Size, % of heap

gc @ Shenandoah ® Shenandoah (max pacing

Live Data Size, % of heap

gc @ Shenandoah @ Shenandoah (max pacing

Q redhat

Pacing: Observations

1. Pacing provides essential negative feedback loop

m Thread allocates? Thread pays for it!
m Thread does not allocate as much? It can run freely!

Q rednat

Pacing: Observations

1. Pacing provides essential negative feedback loop

m Thread allocates? Thread pays for it!
m Thread does not allocate as much? It can run freely!

2. Pacing introduces local latency

m Hidden from the tools, hidden from usual GC log
m Latency is not global, making perf analysis harder

Q rednat

Pacing: Observations 8% 6

1. Pacing provides essential negative feedback loop

m Thread allocates? Thread pays for it!
m Thread does not allocate as much? It can run freely!

2. Pacing introduces local latency

m Hidden from the tools, hidden from usual GC log
m Latency is not global, making perf analysis harder

3. Nuclear option: max pacing delay = +oo

m Resolves the need for handling allocation failures: thread
always stalls when memory is not available
m Shenandoah caps delay at 10 ms to avoid cheating

Q rednat

Handling Failures: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Handling Failures: Shenandoah Control Loop

Non-allocating thread

Allocating thread . AIIocationlpacing .
B o Pl
v A h
2 GC : . Y recvcl
» Progress = Recycle
L L] L ¥
1 L 4 L2 L 4
|]

Concurrent GC with pacing Degenerated GC

m If AF happens, «degenerates»: completes under STW

O rednat

Handling Failures: Degenerated GC

Pause Init Update Refs 0.034ms

Cancelling GC: Allocation Failure

Concurrent update references 7265M->8126M(8192M) 248.467ms
Pause Degenerated GC (Update Refs) 8126M->2716M(8192M) 29.787ms

m First allocation failure dives into stop-the-world mode
m Degenerated GC continues the cycle
m Second allocation failure may upgrade to Full GC

Q rednat

Handling Failures: Degenerated GC

Pause Init Update Refs 0.034ms

Cancelling GC: Allocation Failure

Concurrent update references 7265M->8126M(8192M) 248.467ms
Pause Degenerated GC (Update Refs) 8126M->2716M(8192M) 29.787ms

m First allocation failure dives into stop-the-world mode
m Degenerated GC continues the cycle
m Second allocation failure may upgrade to Full GC

Q rednat

Handling Failures: Full GC

Full GC is the Maximum Credible Accident;
Parallel, STW, Sliding «Lisp 2»-style GC.

m Designed to recover from anything: 99% full regions,
heavy (humongous) fragmentation, abort from any point
in concurrent GC, etc.

m Parallel: Multi-threaded, runs on-par with Parallel GC

m Sliding: No additional memory needed + reuses fwdptr
slots to store forwarding data

O rednat

Handling Failures: Observations 8% 6

1. Being fully concurrent is nice, but own the failures

m The failures will happen, accept it
m «Our perfect GC melted down, because you forgot this magic
VM option(, stupid)» flies only that far

Q rednat

Handling Failures: Observations 8% 6

1. Being fully concurrent is nice, but own the failures

m The failures will happen, accept it
m «Our perfect GC melted down, because you forgot this magic
VM option(, stupid)» flies only that far

2. Graceful and observable degradation is key

m Getting worse incrementally is better than falling off the cliff
m Have enough logging to diagnose the degradations

Q rednat

Handling Failures: Observations 8% 6

1. Being fully concurrent is nice, but own the failures

m The failures will happen, accept it
m «Our perfect GC melted down, because you forgot this magic
VM option(, stupid)» flies only that far

2. Graceful and observable degradation is key

m Getting worse incrementally is better than falling off the cliff
m Have enough logging to diagnose the degradations

3. Failure paths performance is important
m Degenerated GC is not throwing away progress
m Full GCis optimized too

Q rednat

Conclusion (I)

Conclusion (I): In Single Picture

Universal GC does not exist:
either low latency, or high throughput
(, or low memory footprint)

| Shenandoah, ZGC | | Parallel, Serial |
| G1, CMS |
Pause times

>

1ms 10 ms 100 ms 1ls 10s

Runtime overheads
<
20% 15% 10% 5% 0%

Choose this for your workload!

O rednat

Conclusion (I): In Single Paragraph

1. No GC could detect what tradeoffs you are after: you
have to tell it yourself

O redhat

Conclusion (I): In Single Paragraph

1. No GC could detect what tradeoffs you are after: you
have to tell it yourself

2. Stop-the-world GCs beat concurrent GCs in throughput
and efficiency. Parallel GC is your choice!

O redhat

Conclusion (I): In Single Paragraph

1. No GC could detect what tradeoffs you are after: you
have to tell it yourself

2. Stop-the-world GCs beat concurrent GCs in throughput
and efficiency. Parallel GC is your choice!

3. Concurrent Mark trims down the pauses significantly.
G1 is ready for this, use it!

O redhat

Conclusion (I): In Single Paragraph

1.

No GC could detect what tradeoffs you are after: you
have to tell it yourself

. Stop-the-world GCs beat concurrent GCs in throughput

and efficiency. Parallel GC is your choice!

Concurrent Mark trims down the pauses significantly.
G1 is ready for this, use it!

Concurrent Copy/Compact needs to be addressed for
even shallower pauses. This is where Shenandoah and
ZGC come in!

O redhat

Conclusion (I): Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Dev follows latest JDK, backports to 13, 11u, 8u

m 8u backport ships in RHEL 7.4+, Fedora 24+

m 11u backport ships in Fedora 27+

m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q rednat

https://wiki.openjdk.java.net/display/shenandoah/

End of Part]

Q rednat

Part II

Q rednat

Pauses

Pauses: When Everything Is Good

LRUFragger, 100 GB heap, ~ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 0.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms
Pause Final Update Refs 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms
Q rednat

Pauses: When Everything Is Good

LRUFragger, 100 GB heap, ~ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 0.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms
Pause Final Update Refs 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms
Q rednat

Pauses: When Something Is Not So Good

Worst-case cycle in one of the workloads:

Pause Init Mark 4.915ms

Concurrent marking 794M->794M(4096M) 95.853ms

Pause Final Mark 30.876ms

Concurrent cleanup 795M->795M(4096M) 0.170ms

Concurrent evacuation 795M->796M(4096M) 0.197ms

Pause Init Update Refs 0.029ms

Concurrent update references 796M->796M(4096M) 28.707ms
Pause Final Update Refs 2.764ms

Concurrent cleanup 796M->792M(4096M) 0.372ms
Q rednat

Pauses: Pause Taxonomy

I Mark I Compact

Init CM Finish CM

Q redhat

Pauses: Pause Taxonomy

I Compact

Init CM Finish CM

I‘ Evacuate ‘ Update Refs I

Init CM Finish CM Init UR Finish UR

Q redhat

Pauses: Pause Taxonomy

I Compact

Init CM Finish CM

I‘ Evacuate ‘ Update Refs I

Finish CM ™™ *=+o..____| Init UR

Init CM Finish UR

Sync VM Operation Cleanup

Q redhat

Pauses: Pause Taxonomy

I Compact

Init CM Finish CM

I‘ Evacuate ‘ Update Refs I

lnitcM Finish CM """===-o_ | Init UR Finish UR
Sync VM Operation Cleanup
" "GC time": b
-Xlog:gc

A 4
a

Actual pause time:
-Xlog:safepoint

Q redhat

Safepoint Prolog: Ideas

1. Make sure changing the VM state is safe
2. Enable cooperative thread suspension
3. Have the known state points: e.g. where are the pointers

push %rbx
LOQOP:
inc Yrax
test (Yrip, 0x488313) # safepoint poll
Jrbx ts ptr, (4rsp) is ptr
cmp %rax, (%rbx, 8)
j1 LOOP

Q rednat

TTSP: Pause Taxonomy

I Compact

Init CM Finish CM

I‘ Evacuate ‘ Update Refs I

Finish CM ™™ *=+o..____| Init UR

Init CM Finish UR

Sync VM Operation Cleanup

Q redhat

TTSP: Pause Taxonomy

I Compact

Init CM Finish CM

I‘ Evacuate ‘ Update Refs I

Finish CM ™™ *=+o..____| Init UR

Init CM Finish UR

Sync VM Operation Cleanup

Q redhat

TTSP: Definition

Time To Safepoint

| Sync

VM Operation

Cleanup

—_ P

\ = /
\,\\\ /

VM Thread

—

I,

\'" JavaThread 1

-

I,

Java Thread 2

TTSP: Time between VM Thread decision to make a safepoint,
until all Java threads have reacted

Q rednat

TTSP: Definition

Time To Safepoint

| Sync VM Operation Cleanup
""""" < 4
W VM Thread

\ T~d ’
1 ~

\
1 .
\

Java Thread 1

I,

Java Thread 2

-

Some threads are still happily executing after safepoint
request, having not observed it yet

Q rednat

TTSP: Long Loops

In tight loops, safepoint poll costs are very visible!
Solution: eliminate safepoint polls in short cycles

inc Yrax
cmp %rax, $100
j1 LOOP

Q rednat

TTSP: Long Loops

In tight loops, safepoint poll costs are very visible!
Solution: eliminate safepoint polls in short cycles

inc Yrax
cmp %rax, $100
j1 LOOP

How short is short, though?

Q rednat

TTSP: Long Loops

In tight loops, safepoint poll costs are very visible!
Solution: eliminate safepoint polls in short cycles

inc Y%rax
cmp %rax, $100
j1 LOOP

How short is short, though?
Hotspot’s answer: Counted loops are short!

Q redhat

TTSP: Long Loops

int[] arr;

O@Benchmark
public int test() throws InterruptedException {
int r = 0;
for (int i : arr)
r = (i * 1664525 + 1013904223 + r) % 1000;
return r;

3

java -XX:+UseShenandoahGC -Dsize=10'000'000
Performance: 35.832 +- 1.024 ms/op

Total Pauses (G) = 0.69 s (a = 26531 us)
Total Pauses (N) = 0.02 s (a 734 us)

Q redhat

TTSP: -XX:+UseCountedLoopSafepoints

The magic VM option to keep the safepoints in counted loops!
...with quite some throughput overhead :(

-XX:+UseShenandoahGC -XX:-UseCountedLoopSafepoints
Performance: 35.832 +- 1.024 ms/op

Total Pauses (G) = 0.69 s (a = 26531 us)

Total Pauses (N) 0.02 s (a 734 us)

-XX:+UseShenandoahGC -XX:+UseCountedLoopSafepoints
Performance: 38.043 +- 0.866 ms/op

Total Pauses (G) = 0.02 s (a 811 us)

Total Pauses (N) 0.02 s (a 670 us)

Q rednat

TTSP: Loop Strip Mining

Make a smaller bounded loop without the safepoint polls
inside the original one:

for (c : [0, L] by M) {

for (¢ : [0, L]) { for (k : [0: M]) {
use(c) ; s use(c + k);
<safepoint poll> }
} <safepoint poll>
}

Amortize safepoint poll costs without sacrificing TTSP!

Q rednat

TTSP: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024

Total Pauses (G)
Total Pauses (N)

0.69 s (a
0.02 s (a

ms/op
= 26531 us)
734 us)

Q redhat

TTSP: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024

Total Pauses (G) =
Total Pauses (N)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1

0.69 s (a
0.02 s (a

ms/op

26531 us)
734 us)

Performance: 38.043 +- 0.866 ms/op

Total Pauses (G) =
Total Pauses (N) =

0.02 s (a
0.02 s (a

811 us)
670 us)

Q rednat

TTSP: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024 ms/op
Total Pauses (G) = 0.69 s (a = 26531 us)
Total Pauses (N) 0.02 s (a 734 us)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1
Performance: 38.043 +- 0.866 ms/op

Total Pauses (G) = 0.02 s (a = 811 us)
Total Pauses (N) = 0.02 s (a = 670 us)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1000
Performance: 34.660 +- 0.657 ms/op

Total Pauses (G) = 0.03 s (a = 842 us)

Total Pauses (N) = 0.02 s (a = 682 us)

Q redhat

TTSP: Runnable Threads

The suspension is cooperative:
every runnable thread has to react to a safepoint request

m Non-runnable threads are already considered at
safepoint: all those idle threads that are WAITING,
TIMED_WAITING, BLOCKED, etc are safe already

m Lots of runnable threads: each thread should get
scheduled to roll to safepoint

O rednat

TTSP: Runnable Threads Test

for (int i : arr) {
r = (i * 1664525 + 1013904223 + r) % 1000;

S +
: 3 Each thread needs scheduling to roll to safepoint:

java -XX:+UseShenandoahGC -Dthreads=16
Total Pauses (G) 0.30 s (a 1529 us)
Total Pauses (N) 0.23 s (a 1166 us)

Q rednat

TTSP: Runnable Threads Test

for (int i : arr) {
r = (i * 1664525 + 1013904223 + r) % 1000;
+

{ 3 Each thread needs scheduling to roll to safepoint:

java -XX:+UseShenandoahGC -Dthreads=16
Total Pauses (G) 0.30 s (a 1529 us)
Total Pauses (N) 0.23 s (a 1166 us)

java -XX:+UseShenandoahGC -Dthreads=1024
Total Pauses (G) = 5.14 s (a = 36689 us)
Total Pauses (N) = 0.22 s (a = 1564 us)

Q redhat

TTSP: Latency Tips g)!

1. Safepoint monitoring is your friend

m Enable -XX:+PrintSafepointStatistics along with GC logs
m Use GC that tells you gross pause times that include safepoints

Q rednat

TTSP: Latency Tips g)!

1. Safepoint monitoring is your friend

m Enable -XX:+PrintSafepointStatistics along with GC logs
m Use GC that tells you gross pause times that include safepoints

2. Trim down the number of runnable threads

m Overwhelming the system is never good
m Use shared thread pools, and then share the thread pools

Q rednat

TTSP: Latency Tips g)!

1. Safepoint monitoring is your friend

m Enable -XX:+PrintSafepointStatistics along with GC logs
m Use GC that tells you gross pause times that include safepoints

2. Trim down the number of runnable threads

m Overwhelming the system is never good
m Use shared thread pools, and then share the thread pools

3. Watch TTSP due to code patterns, and then enable:

B -XX:+UseCountedLoopSafepoints for JDK 9-
B -XX:LoopStripMiningIters=# for JDK 10+

Q rednat

GC Roots: Pause Taxonomy

I Compact

Init CM Finish CM

I‘ Evacuate ‘ Update Refs I

Finish CM ™™ *=+o..____| Init UR

Init CM Finish UR

Sync VM Operation Cleanup

Q redhat

GC Roots: Pause Taxonomy

Finish CM

Init CM

Init CM

I‘ Evacuate

Finish CM """===-o_ | Init UR

Compact

‘ Update Refs I

VM Operation

Cleanup

Roots

Finish UR

Q redhat

GC Roots: What Are They, Dude

Def: «GC Root», slot with implicitly reachable object

Def: «Root set», the complete set of GC roots

«Implicitly reachable» = reachable without Java objects
m Popular: static fields, «thread stacks», «local variables»
m Less known: anything that holds Java refs in native code

O rednat

GC Roots: There Are Lots of Them

7dk10/bin/java -XX:+UseShenandoahGC -Xlog:gctstats

Pause Init Mark (G) = 0.07 s (a = 7011 us)
Pause Init Mark (N) = 0.06 s (a = 6052 us)
Scan Roots = 0.06 s (a = 5887 us)
S: Thread Roots 0.01 s (a = 1031 us)

S: String Table Roots 0.02 s (a = 1647 us)

S: Universe Roots 0.00 s (a = 2 us)

S: JNI Roots 0.00 s (a = 8 us)

S: JNI Weak Roots 0.00 s (a = 275 us)

S: Synchronizer Roots 0.00 s (a = 4 us)

S: Management Roots 0.00 s (a = 2 us)

S: System Dict Roots 0.00 s (a = 329 us)

S: CLDG Roots = 0.02 s (a = 1583 us)

S: JVMTI Roots = 0.00 s (a = 1 us)

Q rednat

Thread Roots: Why

void k() {
Object o1l = get();
m();
workWith(ol) ;

b

void m() {
Object 02 = get();
// <gc safepoint here>
workWith(o2) ;

}

Once we hit the safepoint, we
have to figure that both o1
and o2 are reachable

Need to scan all activation

records up the stack looking
for references

O redhat

Thread Roots: Trick 1, Local Var Reachability*

Trick: computing the oop
maps does account the

void m() {
Object 02 = get(); variable liveness!
// <gc safepoint here>
doSomething () ; Here, 02 would not be
¥ exposed at safepoint, making

the object reclaimable

“https://shipilev.net/jvm/anatomy-quarks/8-local-var-reachability/ @ rednat

https://shipilev.net/jvm/anatomy-quarks/8-local-var-reachability/

Thread Roots: Trick 2, Saving Grace

"thread-100500" #100500 daemon prio=5 os_prio=0 tid=0x13371337
nid=0x11902 waiting on condition TIMED_WAITING

at sun.misc.Unsafe.park(Native Method)

- parking to

at
at
at
at
at
at
at

java.
java.
java.
java.
java.
java.
java.

util.
util.
util.
util.
util.
util.
lang.

wait for

concurrent.
concurrent.
concurrent.
concurrent.
concurrent.
concurrent.

Thread.run

<0x0000000081e39398>

locks.LockSupport.parkNanos
locks.AbstractQueuedSynchronizer$ConditionQb]
LinkedBlockingQueue.poll
ThreadPoolExecutor.getTask
ThreadPoolExecutor.runWorker
ThreadPoolExecutor$Worker.run

Most threads are stopped at shallow stacks

Q rednat

Thread Roots: GC Handling

GC threads scan Java threads in parallel:
N GC threads scan K Java threads

Thread Roots Count =
~ Average Stack Depth X Java Thread Count

Corollaries:
m Java Thread Count < Count(CPU) - excellent
m Small Average Stack Depth - excellent

Q rednat

Thread Roots: Latency Tips Q20

1. Make sure only a few threads are active

m Ideally, N_CPU threads, sharing the app load
m Natural with thread-pools: most threads are parked at shallow
stack depths

Q rednat

Thread Roots: Latency Tips Q20

1. Make sure only a few threads are active

m Ideally, N_CPU threads, sharing the app load
m Natural with thread-pools: most threads are parked at shallow
stack depths

2. Trim down the thread stack depths

m Calling into thousands of methods exposes lots of locals
m Tune up inlining: less frames to scan

Q rednat

Thread Roots: Latency Tips Q20

1. Make sure only a few threads are active

m Ideally, N_CPU threads, sharing the app load
m Natural with thread-pools: most threads are parked at shallow
stack depths

2. Trim down the thread stack depths

m Calling into thousands of methods exposes lots of locals
m Tune up inlining: less frames to scan

3. Wait for and exploit runtime improvements

m Grey thread roots and concurrent root scans?
m Per-thread scans with handshakes?

Q rednat

Sync Roots: Why

Locking

Unlocked

001

Progressively heavier lock metadata:

unlocked
Q rednat

Sync Roots: Why

Locking
... >
Unlocking
NN NN RN RN EE AR R EEEEEE AR AR EEEEEAESERENEEEEEESEEEEEEEESSESEEEEEEEES
Unlocked Biased
001 Thread ID 101

Progressively heavier lock metadata:
unlocked, biased

Q rednat

Sync Roots: Why

Locking
... >
Unlocking
RN AR AR EEEEE AR AR EEEEE R RRNEEEREEEEREEEEEERSEREEEEEEEREEEEE
Unlocked Biased Lightweight (thin)
001 Thread ID 101 &LockRcrd | 000
LockRecord

(somewhere on stack)

Progressively heavier lock metadata:
unlocked, biased, thin locks

Q rednat

Sync Roots: Why

Locking
... IS
Unlocking
s
Unlocked Biased Lightweight (thin) Heavyweight (fat)
001 Thread ID 101 &LockRcrd | 000 &ObjMon | 010

LockRecord ObjectMonitor

(somewhere on stack)

Ultimately, ObjectMonitor that associates object

with its fat native synchronizer, in both directions o
5 redhat

Sync Roots: Why

Locking
... IS
Unlocking
s
Unlocked Biased Lightweight (thin) Heavyweight (fat)
001 Thread ID 101 &LockRcrd | 000 &ObjMon | 010

LockRecord ObjectMonitor

(somewhere on stack)

Ultimately, ObjectMonitor that associates object

with its fat native synchronizer, in both directions o
5 redhat

Sync Roots: Syncie-Syncie Test

OBenchmark
public void test() throws InterruptedException {
for (SyncPair pair : pairs) {
pair.move();
}
}

static class SyncPair {
int x, y;
public synchronized void move() {
X+t y--;
}
}

Q rednat

Sync Roots: Depletion Test

static class SyncPair {
int x, y;
public synchronized void move() {
X+ y--;
}
}

java -XX:+UseShenandoahGC -Dcount=1'000'000

Pause Init Mark (N) = 0.00 s (a = 2446 us)
Scan Roots = 0.00 s (a = 2223 us)
S: Synchronizer Roots = 0.00 s (a = 896 us)

Q redhat

Sync Roots: Latency Tips Q20

1. Avoid contended locking on lots of synchronized-s

m Most applications do seldom contention on few monitors
m Replace with j.u.c.Lock, Atomics, VarHandle, etc. otherwise

Q rednat

Dy

Sync Roots: Latency Tips Q%

1. Avoid contended locking on lots of synchronized-s

m Most applications do seldom contention on few monitors
m Replace with j.u.c.Lock, Atomics, VarHandle, etc. otherwise

2. Have more frequent safepoints

m Counter-intuitive, but may keep inflated monitors count at bay
m (More on that later)

Q rednat

Fry

Sync Roots: Latency Tips Q20

1. Avoid contended locking on lots of synchronized-s

m Most applications do seldom contention on few monitors
m Replace with j.u.c.Lock, Atomics, VarHandle, etc. otherwise

2. Have more frequent safepoints

m Counter-intuitive, but may keep inflated monitors count at bay
m (More on that later)

3. Exploit runtime improvements

® -XX:+MonitorInUseLists, enabled by default since JDK 9
m Piggybacking on thread scans (Shenandoah)

Q rednat

Class Roots: Why

C++: ClassLoaderData

k— —
Class Word /
Field 1 (next) (next)

Field 2 Static Field 1 Static Field 1
Field 3 Static Field 2 Static Field 2
Java Heap: Object C++: Klass C++: Klass

Static fields are stored in class mirrors outside the objecg
2 redhat

Class Roots: Why

C++: ClassLoaderData

k— —
Class Word /
Field 1 (next) (next)

Field 2 Static Field 1 Static Field 1
Field 3 Static Field 2 Static Field 2
Java Heap: Object C++: Klass C++: Klass

Even without instances, we need to visit static fields o
2 redhat

Class Roots: Enterprise Hello World Test

@Setup
public void setup() throws Exception {
classes = new Class[count];
for (int ¢ = 0; c < count; c++) {
classes[c] = ClassGenerator.generate();
}
}

java -XX:+UseShenandoahGC -Dcount=100'000
Pause Init Mark (G) = 0.17 s (a = 6068 us)
Pause Init Mark (N) 0.15 s (a = 5484 us)
s
s

Scan Roots = 0.15 (a = 5233 us)

S: CLDG Roots 0.01 432 us)

(a

Q rednat

Class Roots: Latency Tips

1. Avoid too many classes

m Merge related classes together, especially autogenerated
m If not avoidable, make sure classes are unloaded

Q rednat

Class Roots: Latency Tips Q20

1. Avoid too many classes

m Merge related classes together, especially autogenerated
m If not avoidable, make sure classes are unloaded

2. Avoid too many classloaders

m Roots are walked by CLData, more CLs, more CLData to walk
m If not avoidable, make sure CLs are garbage-collected

Q rednat

Dy

Class Roots: Latency Tips Q8

1. Avoid too many classes

m Merge related classes together, especially autogenerated
m If not avoidable, make sure classes are unloaded

2. Avoid too many classloaders

m Roots are walked by CLData, more CLs, more CLData to walk
m If not avoidable, make sure CLs are garbage-collected

3. Exploit runtime improvements

m Shenandoah: parallel classloader data scans
m JDK 9+: less and less oops in native structures
m |DK 12+: concurrent class scans

Q rednat

Fr

String Table Roots: Why

StringTable is native, and references String objects
class String {
bﬁglic native String intern();
. C
class StringTable : public RehashableHashtable<oop, mtSymbol> {

static oop intern(Handle h, jchar* chars, int length, ...);

Q rednat

String Table Roots: Intern Test

@Setup
public void setup() {
for (int ¢ = 0; ¢ < size; c++)
list.add(("" + ¢ + "root").intern());

©@Benchmark
public Object test() { return new Object(); }

5dk10/bin/java -XX:+UseShenandoahGC -Dsize=1'000'000

Pause Init Mark (G) = 0.30 s (a = 10698 us)
Pause Init Mark (N) = 0.29 s (a = 10315 us)
Scan Roots = 0.28 s (a = 10046 us)

S: String Table Roots

0.25 s (a

8991 us)
Q redhat

String Table Roots: Latency Tips

1. Do not use String.intern()
m Itis almost never worth it
= Roll on your own deduplicator/interner

N
& 0

Q redhat

String Table Roots: Latency Tips g)!

1. Do not use String.intern()
m Itis almost never worth it
= Roll on your own deduplicator/interner

2. Watch out for StringTable rehashing and cleanups
B -XX:StringTableSize=# is your friend here
m Surprise: -XX:-ClassUnloading disables StringTable cleanup
m Surprise: StringTable would need to rehash under STW

Q rednat

String Table Roots: Latency Tips g)!

1. Do not use String.intern()
m Itis almost never worth it
= Roll on your own deduplicator/interner

2. Watch out for StringTable rehashing and cleanups
B -XX:StringTableSize=# is your friend here
m Surprise: -XX:-ClassUnloading disables StringTable cleanup
m Surprise: StringTable would need to rehash under STW

3. Wait for more runtime improvements
m JDK 11+: concurrent StringTable
m JDK 11+: resizable StringTable
m JDK 11+: concurrent StringTable scan

Q rednat

Weak References: Pause Taxonomy

Finish CM

Init CM

Init CM

I‘ Evacuate

Finish CM """===-o_ | Init UR

Compact

‘ Update Refs I

VM Operation

Cleanup

Roots

Finish UR

Q redhat

Weak References: Pause Taxonomy

I‘ Evacuate

Finish CM """===-o_ | Init UR

Compact

‘ Update Refs I

Cleanup

Init CM Finish CM

InitCM ___..=-=""""Finish CM
Sync VM Operation

TTSP Roots | Weak Refs

Finish UR

Q redhat

Weak References: What, How, When

The single most GC-sensitive language feature:
soft/weak/phantom references and finalizers

m Weak references have loose relation with the liveness of
the target object (referent), can detect liveness changes

m Contrast: Strong references imply referent is always alive

m Finalizable objects are yet another synthetic weak
reachability level: modeled with j.1.ref.Finalizer

O rednat

Weak References: How Do They Work?

Suppose we have the
object graph where
some objects are not

strongly reachable

4 . .
e.g. treating Reference.referent as normal field
g g ‘ rednat

Weak References: How Do They Work?

strongly
reachable

stongly Scanning through® the
reachable .
weak references yields
strongly strongly reachable
reachable heap: normal GC cycle

strongly
reachable

5 . .
e.g. treating Reference.referent as normal field
g g ‘ rednat

Weak References: How Do They Work?

Back to square one:
start from unmarked
heap...

4 . .
e.g. treating Reference.referent as normal field
g g ‘ rednat

Weak References: How Do They Work?

strongly
reachable

But then, do not mark
through the weak refs,
but discover and
record them separately

4 ; .
e.g. treating Reference.referent as normal field
g g ‘ rednat

Weak References: How Do They Work?

strongly
reachable

softly Now, we can iterate
reachable gver soft-refs, and
treat all non-marked
referents as softly
reachable...

4 ; .
e.g. treating Reference.referent as normal field
g g ‘ rednat

Weak References: How Do They Work?

strongly

reachable

softly Rinse and repeat for
reachable other subtypes, in
weaky ~ Order, and after a few

reachable iterations we have all
weak refs processed

4 ; .
e.g. treating Reference.referent as normal field
g g ‘ rednat

Weak References: How Do They Work?

strongly
reachable
Rinse and repeat for
softly .
reachable other subtypes, in
order, and after a few
weakly iterations we have all

reachable
weak refs processed

phantomly
reachable

4 . .
e.g. treating Reference.referent as normal field
g g ‘ rednat

Weak References: Reachability Tricks

There are four cases: the reference itself can be
(un)reachable, and the referent can be (un)reachable

O rednat

Weak References: Reachability Tricks

SR-1 and SR-4 are unreachable.
Discovery would never visit them, stop

O rednat

Weak References: Reachability Tricks

Trick «Precleaning»: SR-2 is reachable, and its referent is
reachable. No need to handle, remove from discovered list

O redhat

Weak References: Reachability Tricks

SR-3 is reachable, but referent is not.
We may clear the referent, and abandon the subgraph

O rednat

Weak References: Reachability Tricks

H

Trick «Soft»: SR-3 is reachable, but referent is not. We decide
to keep referent alive. Can mark through in concurrent mark!

O rednat

Weak References: Reachability Tricks

H

SR-3 is reachable, but referent is not. We figure it at pause,
decide to keep referent alive: marking at pause!

O rednat

Weak References: Recap, Phases

m Unreachable references: excellent

Reference | Referent Discovery Process | Enqueue
(concurrent) (STW) (STW)
Dead Alive no no no
Dead Dead no no no

Q rednat

Weak References: Recap, Phases

m Unreachable references: excellent
m Reachable referents: good, little overhead

Reference | Referent Discovery Process | Enqueue
(concurrent) (STW) (STW)
Dead Alive no no no
Dead Dead no no no
Alive Alive yes maybe no

Q rednat

Weak References: Recap, Phases

m Unreachable references: excellent

m Reachable referents: good, little overhead
m Unreachable referents: bad, lots of work during STW

Reference | Referent Discovery Process | Enqueue
(concurrent) (STW) (STW)
Dead Alive no no no
Dead Dead no no no
Alive Alive yes maybe no
Alive Dead yes YES YES

Q rednat

Weak References: Recap, Keep Alive

When referent is unreachable, should we make it alive again?

Type Keep Alive Comment

JDK 8- | JDK 9+
Soft no no Cleared on enqueue
Weak no no Cleared on enqueue

O rednat

Weak References: Recap, Keep Alive

When referent is unreachable, should we make it alive again?

m Finalizable objects require resurrection!

Type Keep Alive Comment
JDK 8- | JDK 9+
Soft no Cleared on enqueue
Weak no Cleared on enqueue
Final YES < OMG HE COMES CENTER CANNOT HOLD

Q rednat

Weak References: Recap, Keep Alive

When referent is unreachable, should we make it alive again?

m Finalizable objects require resurrection!
m Phantom references may have to walk the object graph!

Type Keep Alive Comment
JDK 8- | JDK 9+
Soft no no Cleared on enqueue
Weak no no Cleared on enqueue
Final YES YES <— OMG HE COMES CENTER CANNOT HOLD
Phantom yes no Cleared on enqueue since JDK 9

Q rednat

Weak References: Churn Test

O@Benchmark

public void churn(Blackhole bh) {
bh.consume (new Finalizable());
bh.consume (new byte[10000]) ;

}

jdk10/bin/java -XX:+UseShenandoahGC -Xlog:gctstats
Pause Final Mark (G) = 14.90 s (a = 338708 us)
Pause Final Mark (N) = 14.90 s (a = 338596 us)
Finish Queues = 8.36 s (a = 189976 us)
Weak References = 6.50 s (a = 147657 us)
Process 6.04 s (a = 137335 us)
Enqueue = 0.45 s (a = 10312 us)

Q redhat

Weak References: Retain Test

OBenchmark
public Object test() {
if (rq.poll() !'= null) {
ref = new PhantomReference<>(createTreeMap(), rq);

}
return new byte[1000];

7dk8/bin/java -XX:+UseShenandoahGC -verbose:gc
Pause Final Mark (G) 0.44 s (a = 12133 us)

Pause Final Mark (N) = 0.39 s (a = 10777 us)
Finish Queues = 0.08 s (a = 2123 us)
Weak References = 0.29 s (a = 41841 us)

Process 0.29 s (a = 41757 us)
Enqueue = 0.00 s (a = 78 us)

Q redhat

Weak References: Latency Tips Q20

1. Avoid reference churn!

m Make sure referents normally stay reachable
m Do more explicit lifecycle mgmt if they get unreachable often
m Avoid finalizable objects! Use java.lang.ref.Cleaner!

Q rednat

Weak References: Latency Tips Q20

1. Avoid reference churn!

m Make sure referents normally stay reachable
m Do more explicit lifecycle mgmt if they get unreachable often
m Avoid finalizable objects! Use java.lang.ref.Cleaner!

2. Keep graphs reachable via special references small

m Depending on JDK, phantom references need care: use clear ()
m Or, make sure references die along with referents

Q rednat

Weak References: Latency Tips Q20

1. Avoid reference churn!

m Make sure referents normally stay reachable
m Do more explicit lifecycle mgmt if they get unreachable often
m Avoid finalizable objects! Use java.lang.ref.Cleaner!

2. Keep graphs reachable via special references small

m Depending on JDK, phantom references need care: use clear ()
m Or, make sure references die along with referents

3. Tune down the weakref processing frequency

m Look for GC-specific setup
(Shenandoah example: -XX: ShenandoahRefProcFrequency=#)

Q rednat

Class Unload: Pause Taxonomy

I‘ Evacuate

Finish CM """===-o_ | Init UR

Compact

‘ Update Refs I

Cleanup

Init CM Finish CM

InitCM ___..=-=""""Finish CM
Sync VM Operation

TTSP Roots | Weak Refs

Finish UR

Q redhat

Class Unload: Pause Taxonomy

Init CM

Finish CM

Evacuate

Compact

‘ Update Refs I

lnitcM L Finish CM """===-o_ | Init UR
Sync VM Operation Cleanup
TTSP Roots | Weak Refs | Class U

Finish UR

Q redhat

Class Unload: Why, When, How

«A class or interface may be unloaded if and only if its
defining class loader may be reclaimed by the GC»°

m Matters the most when classloaders come and go:
enterprisey apps and other twisted magic

m Class unloading is enabled by default in Hotspot
(-XX:+ClassUnloading)

m Before JDK 12, all implementations required STW

>https://docs.oracle.com/javase/specs/jls/se9/html/jls-12.html#jls- 1“ redhat

https://docs.oracle.com/javase/specs/jls/se9/html/jls-12.html#jls-12.7

Class Unload: Test

@Benchmark
public Class<?> load() throws Exception {
return Class.forName("java.util.HashMap",
true, new URLClassLoader (new URL[0]));

7dk10/bin/java -XX:+UseShenandoahGC -Xlog:gctstats

Pause Final Mark (G) = 0.66 s (a = 328942 us)
Pause Final Mark (N) = 0.66 s (a = 328860 us)
System Purge = 0.66 s (a = 328668 us)
Unload Classes = 0.09 s (a = 43444 us)
CLDG = 0.57 s (a = 284217 us)

Q redhat

Class Unload: Latency Tips Q20

1. Do not expect class unload? — Disable the feature

®m -XX:-ClassUnloading is the ultimate killswitch
m ..but may have ill performance effects when classes to go away

Q rednat

Class Unload: Latency Tips Q20

1. Do not expect class unload? — Disable the feature

®m -XX:-ClassUnloading is the ultimate killswitch
m ..but may have ill performance effects when classes to go away

2. Expectrare class unload? — Tune down the frequency

m Look for GC-specific class unloading frequency setup
(Shenandoah example: -XX: ShenandoahUnloadClassesFreq=#)

Q rednat

Dy

Class Unload: Latency Tips g)!

1. Do not expect class unload? — Disable the feature

®m -XX:-ClassUnloading is the ultimate killswitch
m ..but may have ill performance effects when classes to go away

2. Expectrare class unload? — Tune down the frequency

m Look for GC-specific class unloading frequency setup
(Shenandoah example: -XX: ShenandoahUnloadClassesFreq=#)

3. Exploit runtime improvements

m JDK 12+: concurrent class unloading
m Shenandoah: parallel class metadata scans

Q rednat

&0

Safepoint Epilog: Pause Taxonomy

I Compact

Init CM Finish CM

Evacuate ‘ Update Refs I

lnitcM L Finish CM """===-o_ | Init UR Finish UR
Sync VM Operation Cleanup
TTSP Roots | Weak Refs | Class U

Q redhat

Safepoint Epilog: Pause Taxonomy

I I Compact
Init CM Finish CM
I Evacuate ‘ Update Refs I
Init CM eeeer= " Finish CMU T e Init UR Finish UR
Sync VM Operation Cleanup
TTSP Roots | Weak Refs | Class U Deflation | NM Scan

Q redhat

Safepoint Epilog: What, When, Why

There are actions that execute at each safepoint
(because why not, if we are at STWs)

7dk8/bin/java -XX:+TraceSafepointCleanupTime
[deflating idle monitors, 0.0013491 secs]
[updating inline caches, 0.0000395 secs]

[compilation policy safepoint handler, 0.0000004 secs]
[mark nmethods, 0.0005378 secs]

[rotating gc logs, 0.0002754 secs]?
[purging class loader data graph, 0.0000002 secs]

>Specific for 8, fixed in 9; logging added to 8 recently with JDK-8231398 @ rednat

Monitor Deflation: Why

Locking
... IS
Unlocking
s
Unlocked Biased Lightweight (thin) Heavyweight (fat)
001 Thread ID 101 &LockRcrd | 000 &ObjMon | 010

LockRecord ObjectMonitor

(somewhere on stack)

Missed me? Missed me? Missed me? Missed me?

Somebody needs to «deflate» the monitors... o
2 redhat

Monitor Deflation: Deflation Test

static class SyncPair {
int x, y;
public synchronized void move() {
Xt++; y--;
}
}

java -XX:+TraceSafepointCleanup -Dcount=1'000'000
[deflating idle monitors, 0.0877930 secs]

92052 us)
3982 us)

0.09 s (a
0.00 s (a

Pause Init Mark (G)
Pause Init Mark (N)

Q redhat

Monitor Deflation: Latency Tips®

1. Avoid heavily contended synchronized locks

® j.u.c.l.Lock: footprint overheads
m Atomic operations: performance and complexity overhead

bAll these are for extreme cases, and need verification that nothing else gets affe-&gedhat

Monitor Deflation: Latency Tips®

1. Avoid heavily contended synchronized locks

® j.u.c.l.Lock: footprint overheads
m Atomic operations: performance and complexity overhead

2. Have more safepoints!

m Keeps monitor population low by eagerly cleaning them up
® -XX:GuaranteedSafepointInterval=# is your friend here

bAll these are for extreme cases, and need verification that nothing else gets affe-&gedhat

Monitor Deflation: Latency Tips®

1. Avoid heavily contended synchronized locks

® j.u.c.l.Lock: footprint overheads
m Atomic operations: performance and complexity overhead

2. Have more safepoints!

m Keeps monitor population low by eagerly cleaning them up
® -XX:GuaranteedSafepointInterval=# is your friend here

3. Exploit runtime improvements
B -XX:+MonitorInUseLists, enabled by default since JDK 9
B -XX:MonitorUsedDeflationThreshold=#, incremental deflation
m In progress: concurrent monitor deflation

bAll these are for extreme cases, and need verification that nothing else gets affe-&gedhat

NMethod Scanning: Why

9680
10437
9680
11385
10437
9680
10437
11385

JIT compilers generate lots of code,

some of that code is unused after a while:

2
3
2
4
3
2
3
4

O O O O O 0O 0 O
SR I VR YRR Y
6O 60600000
cooo0ooo0o0o0

.StandardContext:
.StandardContext: :
.StandardContext:
.StandardContext:
.StandardContext:
.StandardContext:
.StandardContext:
.StandardContext:

:unbind

unbind

:unbind
:unbind
:unbind
:unbind
:unbind
:unbind

made

made
made
made
made

not entrant

not entrant
zombie
zombie
not entrant

Need to clean up stale versions of the code

Q rednat

NMethod Scanning: Caveat

uhwnN =

To sweep the generated method,
we need to make sure nothing uses it

Decide the method needs sweep

Mark method «not entrant»: forbid new activations
Check no activations are present on stacks

Mark the nmethod «zombie»: ready for sweep
Sweep the method

O rednat

NMethod Scanning: Caveat

uhwnN =

To sweep the generated method,
we need to make sure nothing uses it

Decide the method needs sweep

Mark method «not entrant»: forbid new activations
Check no activations are present on stacks

Mark the nmethod «zombie»: ready for sweep
Sweep the method

7dk8/bin/java -XX:+TraceSafepointCleanupTime
[mark nmethods, 0.0005378 secs]

Q rednat

VAl

NMethod Scanning: Latency Tips’ !

5
Fa

1. Turn off method flushing
B -XX:-MethodFlushing is your friend here
m There are potential ill effects: code cache overfill (compilation
stops), code cache locality problems (performance problems)

’All these are for extreme cases, and need verification that nothing else gets affe-&gedhat

NMethod Scanning: Latency Tips’

1. Turn off method flushing

B -XX:-MethodFlushing is your friend here
m There are potential ill effects: code cache overfill (compilation
stops), code cache locality problems (performance problems)

2. Reconsider the control flow to avoid deep stacks
m Less stack frames to scan, gets easier on sweeper

’All these are for extreme cases, and need verification that nothing else gets affe-&gedhat

NMethod Scanning: Latency Tips’ Q20

1. Turn off method flushing

B -XX:-MethodFlushing is your friend here
m There are potential ill effects: code cache overfill (compilation
stops), code cache locality problems (performance problems)

2. Reconsider the control flow to avoid deep stacks
m Less stack frames to scan, gets easier on sweeper

3. Exploit runtime improvements

m JDK 10+ provides piggybacking nmethod scans on GC safepoints
m Shenandoah: enables nmethod scans piggybacking

’All these are for extreme cases, and need verification that nothing else gets affe-&gedhat

Code Roots: Why

static final MyIntHolder constant = new MyIntHolder();

@Benchmark
public int test() {
return constant.x;

Inlining reference constants into generated code
is natural for throughput performance:

movabs $0x7111b5108,%r10 # Constant oop
mov 0xc (%r10) ,%edx # getfield «

callg 0x00007£73735dff80 # Blackhole.consume(int)

Q rednat

Code Roots: Fixups

movabs $0x7111b5108,%r10 # Constant oop
mov 0xc (%r10) ,%edx # getfield z

callqg 0x00007£73735dff80 # Blackhole.consume(int)

m Inlined references require code patching: only safe to do
when nothing executes the code block = pragmatically,
under STW

Q rednat

Code Roots: Fixups

movabs $0x7111b5108,%r10 # Constant oop
mov 0xc (%r10) ,%edx # getfield z

callqg 0x00007£73735dff80 # Blackhole.consume(int)

m Inlined references require code patching: only safe to do
when nothing executes the code block = pragmatically,
under STW

m Also need to pre-evacuate the code roots before anyone
sees old object reference!

Q rednat

Code Roots: Pre-Evacuation

Need to pre-evacuate code roots before unparking from STW:

(?; # jdk10/bin/java -XX:+UseShenandoahGC -Xlog:gctstats
Pause Final Mark (G) 0.13 s (a 2768 us)

Pause Final Mark (N) = 0.10 s (a = 2623 us)
Initial Evacuation = 0.08 s (a = 2515 us)
E: Code Cache Roots = 0.04 s (a = 1227 us)

Alternative: barriers after constants, with throughput hit

Q rednat

Code Roots: Latency Tips

1. Have less compiled code around

m Disable tiered compilation
m More aggressive code cache sweeping

N
& 0

Q rednat

Code Roots: Latency Tips Q20

1. Have less compiled code around

m Disable tiered compilation
m More aggressive code cache sweeping

2. Tell runtime to treat code roots for latency

m GC-specific tuning enabling concurrent code cache evacuation
m (diagnostic, unstable) -XX: ScavengeRootsInCode=0 to remove
oops from code

Q rednat

Code Roots: Latency Tips Q20

1. Have less compiled code around

m Disable tiered compilation
m More aggressive code cache sweeping

2. Tell runtime to treat code roots for latency

m GC-specific tuning enabling concurrent code cache evacuation
m (diagnostic, unstable) -XX: ScavengeRootsInCode=0 to remove
oops from code

3. Exploit runtime improvements
m Shenandoah (JDK 8+), G1 (JDK 9+): code cache roots tracking

Q rednat

Conclusion (II)

Conclusion (II): Ultra-Low Latency Addendum

Pre-requisite: get a decent concurrent GC.

Q redhat

Conclusion (II): Ultra-Low Latency Addendum

Pre-requisite: get a decent concurrent GC. After that:

1. Open)DKis able to provide ultra-low (< 1 ms) pauses in
non-extreme cases, and low pauses (< 100 ms) in
extreme cases

Q rednat

Conclusion (II): Ultra-Low Latency Addendum

Pre-requisite: get a decent concurrent GC. After that:

1. Open)DKis able to provide ultra-low (< 1 ms) pauses in
non-extreme cases, and low pauses (< 100 ms) in
extreme cases

2. Open)DK is able to provide ultra-low pauses in extreme
cases with some runtime improvements. Some of them
are already available, upgrade!

O rednat

Conclusion (II): Ultra-Low Latency Addendum

Pre-requisite: get a decent concurrent GC. After that:

1. Open)DKis able to provide ultra-low (< 1 ms) pauses in
non-extreme cases, and low pauses (< 100 ms) in
extreme cases

2. Open)DK is able to provide ultra-low pauses in extreme
cases with some runtime improvements. Some of them
are already available, upgrade!

3. One can avoid extreme case pitfalls with careful and/or
specialized code, until runtimes catch up

Q rednat

Conclusion (II): Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Dev follows latest JDK, backports to 13, 11u, 8u

m 8u backport ships in RHEL 7.4+, Fedora 24+

m 11u backport ships in Fedora 27+

m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q rednat

https://wiki.openjdk.java.net/display/shenandoah/

	Basics
	Overview
	Phases
	Mark
	Concurrent Mark
	Evac
	Concurrent Evac
	Load Ref Barrier
	Update References
	Exotic Barriers
	Overall

	Example
	Command and Control
	Immediates
	Footprint
	Pacing
	Handling Failures

	Conclusion (I)
	Pauses
	Safepoint Prolog
	TTSP
	GC Roots
	Thread Roots
	Sync Roots
	Class Roots
	String Table Roots
	Weak References
	Class Unload
	Safepoint Epilog
	Monitor Deflation
	NMethod Scanning
	Code Roots

	Conclusion (II)

