
jcstress
Breaking Concurrency Bad

Aleksey Shipilev
aleksey.shipilev@oracle.com, @shipilev

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions. The
development, release, and timing of any features or
functionality described for Oracle’s products remains
at the sole discretion of Oracle.

Slide 2/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Concurrency testing is hard

Slide 3/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Problems

1. Time is the external variable
2. The tests are probabilistic at best; need many

runs to catch the unlucky behaviors
3. The faster the test infrastructure has to be, the

more hardcore concurrency stuff it has to use,
the more error-prone it is

Slide 4/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

jcstress

Experimental harness + suite of tests:

http://openjdk.java.net/projects/
code-tools/jcstress/

Lots of non-covered areas
Lots of tests already (12K+)
Found handful of bugs at SW/HW levels

Slide 5/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

http://openjdk.java.net/projects/code-tools/jcstress/
http://openjdk.java.net/projects/code-tools/jcstress/

Test Sample

Volatile increment atomicity test:

class MyTest implements ConcurrencyTest <State , Res > {
void actor1(State s, Res r) { r.r1 = s.v++; }
void actor2(State s, Res r) { r.r2 = s.v++; }

class State { volatile int v; }
State newState () { new State (); }

}

Can infer the behavior from observed (r1, r2) pairs

State Occurrences Expectation
[1, 1] (1 ,360 ,407) KNOWN_ACCEPTABLE
[1, 2] (57 ,137 ,771) REQUIRED
[2, 1] (55 ,286 ,472) REQUIRED

Slide 6/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

The Sweet Taste of Failure

hotspot/src/share/vm/prims/unsafe.cpp1

#define GET_FIELD_VOLATILE(obj , offset , type_name , v) \
oop p = JNIHandles :: resolve(obj); \
type_name v =

OrderAccess :: load_acquire(
(volatile type_name *)
index_oop_from_field_offset_long(p, offset));

Unsafe_GetDoubleVolatile() compiles2 to :

mov 0x18(%esp),%ebp
add %ebp ,%eax
; field offset in %eax
fldl (%eax)
fstpl 0x18(%esp)

1not really, see next slide
2native GCC, targeting i586

Slide 7/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

The Sweet Taste of Failure
#define GET_FIELD_VOLATILE(obj , offset , type_name , v) \

oop p = JNIHandles :: resolve(obj); \
volatile type_name v =

OrderAccess :: load_acquire(
(volatile type_name *)
index_oop_from_field_offset_long(p, offset));

GetDoubleVolatile() actually compiles to:

mov 0x18(%esp),%ebp
add %ebp ,%eax
mov 0x4(%eax),%edx
mov (%eax),%eax
mov %eax ,0x20(%esp)
mov %edx ,0x24(%esp)
mov 0x28(%esi),%esi
fldl 0x20(%esp)
mov 0x8(%esi),%eax
mov 0x4(%esi),%ebp
fstpl 0x18(%esp)

Slide 8/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

The Sweet Taste of Failure
#define GET_FIELD_VOLATILE(obj , offset , type_name , v) \

oop p = JNIHandles :: resolve(obj); \
volatile type_name v =

OrderAccess :: load_acquire(
(volatile type_name *)
index_oop_from_field_offset_long(p, offset));

GetDoubleVolatile() actually compiles to:

mov 0x18(%esp),%ebp
add %ebp ,%eax
mov 0x4(%eax),%edx
mov (%eax),%eax
mov %eax ,0x20(%esp)
mov %edx ,0x24(%esp)
mov 0x28(%esi),%esi
fldl 0x20(%esp)
mov 0x8(%esi),%eax
mov 0x4(%esi),%ebp
fstpl 0x18(%esp)

Slide 8/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart

We know the non-volatile longs/doubles are not
guaranteed to be atomic. And other types?

short s = 0;
s = 0xFFFF; short r1 = s;

JLS/JMM requires 𝑟1 ∈ {0𝑥0000, 0𝑥𝐹𝐹𝐹𝐹}.

And it empirically is!

Slide 9/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart

We know the non-volatile longs/doubles are not
guaranteed to be atomic. And other types?

short s = 0;
s = 0xFFFF; short r1 = s;

JLS/JMM requires 𝑟1 ∈ {0𝑥0000, 0𝑥𝐹𝐹𝐹𝐹}.

And it empirically is!

Slide 9/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart

We know the non-volatile longs/doubles are not
guaranteed to be atomic. And other types?

short s = 0;
s = 0xFFFF; short r1 = s;

JLS/JMM requires 𝑟1 ∈ {0𝑥0000, 0𝑥𝐹𝐹𝐹𝐹}.

And it empirically is!

Slide 9/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #2

short s = 0;
s = 0xFFFF; short t = s;

byte r1 = ((t >> 0) & 0xFF);
byte r2 = ((t >> 8) & 0xFF);

Intuitively:
(𝑟1, 𝑟2) ∈ {(0𝑥00, 0𝑥00), (0𝑥𝐹𝐹, 0𝑥𝐹𝐹)}

Empirically:
(𝑟1, 𝑟2) ∈ {..., (0𝑥00, 0𝑥𝐹𝐹), (0𝑥𝐹𝐹, 0𝑥00)}

Slide 10/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #2

short s = 0;
s = 0xFFFF; short t = s;

byte r1 = ((t >> 0) & 0xFF);
byte r2 = ((t >> 8) & 0xFF);

Intuitively:
(𝑟1, 𝑟2) ∈ {(0𝑥00, 0𝑥00), (0𝑥𝐹𝐹, 0𝑥𝐹𝐹)}

Empirically:
(𝑟1, 𝑟2) ∈ {..., (0𝑥00, 0𝑥𝐹𝐹), (0𝑥𝐹𝐹, 0𝑥00)}

Slide 10/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #2

short s = 0;
s = 0xFFFF; short t = s;

byte r1 = ((t >> 0) & 0xFF);
byte r2 = ((t >> 8) & 0xFF);

Intuitively:
(𝑟1, 𝑟2) ∈ {(0𝑥00, 0𝑥00), (0𝑥𝐹𝐹, 0𝑥𝐹𝐹)}

Empirically:
(𝑟1, 𝑟2) ∈ {..., (0𝑥00, 0𝑥𝐹𝐹), (0𝑥𝐹𝐹, 0𝑥00)}

Slide 10/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #3

short s = 0;
s = 0xFFFF; short t = s;

byte r1 = ((t >> 0) & 0xFF);
byte r2 = ((t >> 8) & 0xFF);

C1 is unaffected, C2 is failing reliably
the same result for byte/char/short fields
volatile s is not helping

Slide 11/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #3

short s = 0;
s = 0xFFFF; short t = s;

byte r1 = ((t >> 0) & 0xFF);
byte r2 = ((t >> 8) & 0xFF);

C1 is unaffected, C2 is failing reliably
the same result for byte/char/short fields

volatile s is not helping

Slide 11/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #3

short s = 0;
s = 0xFFFF; short t = s;

byte r1 = ((t >> 0) & 0xFF);
byte r2 = ((t >> 8) & 0xFF);

C1 is unaffected, C2 is failing reliably
the same result for byte/char/short fields
volatile s is not helping

Slide 11/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #4

short t = short_load(s.x);
r.r1 = byte_store(and(shift(t, 0), 0xFF)));
r.r2 = byte_store(and(shift(t, 8), 0xFF)));

...transforms to:
short t = short_load(s.x);
r.r1 = byte_store(t);
r.r2 = byte_store(shift(t, 8));

...transforms to:
r.r1 = byte_store(unsigned_load(s.x));
r.r2 = byte_store(shift(signed_load(s.x), 8));

Slide 12/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #4

short t = short_load(s.x);
r.r1 = byte_store(and(shift(t, 0), 0xFF)));
r.r2 = byte_store(and(shift(t, 8), 0xFF)));

...transforms to:
short t = short_load(s.x);
r.r1 = byte_store(t);
r.r2 = byte_store(shift(t, 8));

...transforms to:
r.r1 = byte_store(unsigned_load(s.x));
r.r2 = byte_store(shift(signed_load(s.x), 8));

Slide 12/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #4

short t = short_load(s.x);
r.r1 = byte_store(and(shift(t, 0), 0xFF)));
r.r2 = byte_store(and(shift(t, 8), 0xFF)));

...transforms to:
short t = short_load(s.x);
r.r1 = byte_store(t);
r.r2 = byte_store(shift(t, 8));

...transforms to:
r.r1 = byte_store(unsigned_load(s.x));
r.r2 = byte_store(shift(signed_load(s.x), 8));

Slide 12/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #5

short t = s.x;
r.r1 = (byte) ((t >> 0) & 0xFF);
r.r2 = (byte) ((t >> 8) & 0xFF);

...compiles to:
; references: %rdx = $s; %rcx = $r
movzwl 0xc(%rdx),%r11d ; read s.x
mov %r11b ,0xc(%rcx) ; store r.r1
movswl 0xc(%rdx),%r10d ; read s.x again!
shr $0x8 ,%r10d ; shift
mov %r10b ,0xd(%rcx) ; store r.r2

Kiss the atomicity bye-bye!

Slide 13/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Tear My Heart Apart, #5

short t = s.x;
r.r1 = (byte) ((t >> 0) & 0xFF);
r.r2 = (byte) ((t >> 8) & 0xFF);

...compiles to:
; references: %rdx = $s; %rcx = $r
movzwl 0xc(%rdx),%r11d ; read s.x
mov %r11b ,0xc(%rcx) ; store r.r1
movswl 0xc(%rdx),%r10d ; read s.x again!
shr $0x8 ,%r10d ; shift
mov %r10b ,0xd(%rcx) ; store r.r2

Kiss the atomicity bye-bye!

Slide 13/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

jcstress:
Try it. Use it. Break it.

Slide 14/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Thanks!

Slide 15/15. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

