
Java Benchmarking
as easy as two timestamps

Aleksey Shipilёv
aleksey.shipilev@oracle.com, @shipilev

The following is intended to outline our general product
direction. It is intended for information purposes only, and may
not be incorporated into any contract. It is not a commitment
to deliver any material, code, or functionality, and should not
be relied upon in making purchasing decisions. The
development, release, and timing of any features or
functionality described for Oracle’s products remains at the
sole discretion of Oracle.

Slide 2/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intro

Slide 3/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intro: Warming up...

«How much for instantiating a String?»

long time1 = System.nanoTime ();
for (int i = 0; i < 1000; i++) {

String s = new String("");
}
long time2 = System.nanoTime ();
System.out.println("Time:" + (time2 - time1));

Slide 4/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory

Slide 5/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory: Why would people benchmark?

In the name of...
1. Holywar: Node.js – But Java... – Node.js!
2. Marketing: Check we are meeting the (release) criteria
3. Engineering: Isolate a performance phenomena, make a

reference point for improvements
4. Science: Understand the performance model, and predict

the future behavior

Slide 6/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory: In the name of Holywar

My favorite example: Computer Language Benchmarks Game:1

� Most comparisons are hardly fair: e.g. AOT vs. JIT
� Measures what exactly? E.g. pidigits measures the speed

of FFI to GNU GMP
� Lots of disclaimers these results are misrepresentative of

the real world (alas, nobody reads them or cares enough)
� People love it, since it gives you numbers, which you can

then take as your shield and sword in Internet debates

1http://benchmarksgame.alioth.debian.org/
Slide 7/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://benchmarksgame.alioth.debian.org/

Theory: In the name of Marketing

My favorite example: SPEC benchmarks
� Reference benchmark suites, agreed upon by the vendors
� Provide the reference points, for which one can set the

success criteria, use in adverts, tweet obnoxious
competitive data, etc.

� It does not matter how representative they are – it
matters they are The Benchmarks Born at the Fiery
Summit of Orodruin

Slide 8/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory: In the name of Engineering

«If you can’t measure it, you can’t optimize it»
� Need the conditions where the system is running in a

predictable state, so we are able to quantify improvements
� These benchmarks usually focus on particular pieces of

system, and have more resolution than «marketing»
benchmarks

Slide 9/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory: In the name of Science

«Science Town PD: To Explain and Predict»
� Derive the sound performance model from the results
� Use the performance model to predict the future

behavior: keep calm and deploy to production
� The most sweaty, and the most reliable target for

benchmarking

Slide 10/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory: Why would people benchmark?

In the name of...
1. Holywar: Node.js – But Java... – Node.js!
2. Marketing: check we are meeting the (release) criteria
3. Engineering: isolate a performance phenomena, make a

reference point for improvements
4. Science: understand the performance model, and predict

the future behavior

Slide 11/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory: «Scientific» approach

Ultimate Question

How does a benchmark react on changing the external
conditions?

Or, how far the actual performance model is from the
mental one?

1. Fool-proof: do these results even make any sense?
2. Negative control: benchmark reacts on change, but

shouldn’t?
3. Positive control: benchmark should not react on change,

but does?

Slide 12/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory: «Engineering» approach

Ultimate Question

Why doesn’t my benchmark run faster?

Directly observe if our experimental setup is sane:
1. Where are the bottlenecks?
2. Do we expect those things to be bottlenecks?
3. Are these benchmarks running in the same mode?

Slide 13/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Theory: JMH

JMH is a Serious Business:
http://openjdk.java.net/projects/code-tools/jmh/

� When used properly, helps to mitigate VM quirks
� Aids running lots of benchmarks in different conditions
� Internal profiling to quickly triage the issues
� JVM languages support: Java, Scala, Groovy, Kotlin
� ...or anything else callable from Java (e.g. Nashorn, etc.)

Slide 14/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://openjdk.java.net/projects/code-tools/jmh/

Scientific

Slide 15/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Scientific: Story

In this section, we explore some of the methodology
implications when doing the benchmarks. People tend to think

this story is a deal-breaker when trying to build their own
benchmark harnesses.

Complete story and narrative is here:
http://shipilev.net/blog/2014/nanotrusting-nanotime/

Slide 16/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://shipilev.net/blog/2014/nanotrusting-nanotime/

Models: Model Problem

«Jessie, it’s time to cook some
benchmarks...»

«What is the cost of
volatile write?»

It seems like a very easy question...
Let’s measure it! Shall we?

Slide 17/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Easy...

public class VolatileWrite {
int v; volatile int vv;

@Benchmark
int baseline1 () { return 42; }

@Benchmark
int incrPlain () { return v++; }

@Benchmark
int incrVolatile () { return vv++; }

}

Slide 18/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: ...does it!

public class VolatileWrite {
int v; volatile int vv;

@Benchmark
int baseline1 () { return 42; } // 2.0 ns

@Benchmark
int incrPlain () { return v++; } // 3.5 ns

@Benchmark
int incrVolatile () { return vv++; } // 15.1 ns

}

Slide 19/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Fatal Flaw

volatile int vv;

@Benchmark
int incrVolatile () { return vv++; }

� Measuring in very unfavorable case, when benchmark is
choked by volatiles. We are pushing the system to its
«edge» condition. This almost never happens in
production.

� What do we really need to know is:
«What is the volatile cost in realistic conditions?»

Slide 20/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Backoffs

@Param int tokens;

volatile int vv;

@Benchmark
int incrVolatile () {

Blackhole.consumeCPU(tokens); // burn time
return vv++;

}

� «Burn off» a few cycles before doing heavy-weight op
� Juggle tokens ⇒ juggle operation mix

Slide 21/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Backoffs

� Take a few baselines while we are at it: which one is
correct?

@Benchmark
void baseline_Plain ()

{ BH.consumeCPU(tokens); }

@Benchmark
int baseline_Return42 ()

{ BH.consumeCPU(tokens); return 42; }

@Benchmark
int baseline_ReturnPlain ()

{ BH.consumeCPU(tokens); return v; }

Slide 22/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Measuring...

«Bender B.
Rodriguez

regrets using
Excel to draw
the charts»

0

25

50

75

100

0 10 20 30
backoff

n
s
e

c
/o

p

label

baseline_Plain
baseline_Return42
baseline_ReturnV

incrPlain
incrVolatile

Slide 23/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Subtracting baselinePlain

� Absolute volatile cost gets compensated very well!
� Can we really subtract the baselines?

−5

0

5

10

15

0 10 20 30
backoff

n
s
e

c
/o

p

label baseline_Plain incrPlain incrVolatile

Slide 24/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Subtracting baseline_Return42

� We added some code in the baseline, and it runs faster?
� Nothing surprising: performance is not usually composable

−5

0

5

10

15

0 10 20 30
backoff

n
s
e

c
/o

p

label baseline_Return42 incrPlain incrVolatile

Slide 25/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: WTF is different?

−5

0

5

10

15

0 10 20 30
backoff

n
s
e

c
/o

p

label baseline_Plain incrPlain incrVolatile

@Benchmark
void base_Plain () {

BH.consumeCPU(tkns);
}
.

−5

0

5

10

15

0 10 20 30
backoff

n
s
e

c
/o

p

label baseline_Return42 incrPlain incrVolatile

@Benchmark
int base_Ret42 () {

BH.consumeCPU(tkns);
return 42;

}

Slide 26/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: WTF is different?

−5

0

5

10

15

0 10 20 30
backoff

n
s
e

c
/o

p

label baseline_ReturnV incrPlain incrVolatile

@Benchmark
int base_RetV () {

BH.consumeCPU(tkns);
return v;

}

−5

0

5

10

15

0 10 20 30
backoff

n
s
e

c
/o

p

label baseline_Return42 incrPlain incrVolatile

@Benchmark
int base_Ret42 () {

BH.consumeCPU(tkns);
return 42;

}

Slide 27/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Bottom Line

� Different baselines act differently: they are tests
themselves!

� Therefore, we can just compare plain and volatile:

−5

0

5

10

15

0 10 20 30
backoff

n
s
e

c
/o

p

label incrPlain incrVolatile

Slide 28/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: Conclusion

This is what models are for!

� Explore the system behavior outside the (randomly)
chosen configuration points

� Allow to predict the system behavior in future conditions
� Catch the experimental setup problems (control!)
� Combinatorial experiments help to create different

operation mixes, and derive the individual op costs from
their composite performance

Slide 29/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Models: You Are Joking, Right?

«Combinatorial experiments help to create different operation
mixes, and derive the individual op costs from their composite

performance»

System.nanoTime!
Measure each part individually!

Slide 30/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Verifying infrastructure

Why not?

// call continuously
public long measure () {

long startTime = System.nanoTime ();
work ();
return System.nanoTime () - startTime;

}

Slide 31/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Measuring Latency

Latency = time to call System.nanoTime

@Benchmark
public long latency_nanotime () {

return System.nanoTime ();
}

Slide 32/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Measuring Granularity

Granularity = the minimum non-zero difference between two
consecutive calls

private long lastValue;

@Benchmark
public long granularity_nanotime () {

long cur;
do {

cur = System.nanoTime ();
} while (cur == lastValue);
lastValue = cur;
return cur;

}

Slide 33/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Typical Case [Linux]

Java(TM) SE Runtime Environment , 1.7.0_45 -b18
Java HotSpot(TM) 64-Bit Server VM, 24.45-b08
Linux , 3.13.8-1-ARCH , amd64

Running with 1 threads and [-client]:
granularity_nanotime: 26.300 +- 0.205 ns

latency_nanotime: 25.542 +- 0.024 ns

Running with 1 threads and [-server]:
granularity_nanotime: 26.432 +- 0.191 ns

latency_nanotime: 26.276 +- 0.538 ns

Slide 34/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Typical Case [Solaris]

Java(TM) SE Runtime Environment , 1.8.0- b132
Java HotSpot(TM) 64-Bit Server VM, 25.0-b70
SunOS , 5.11, amd64

Running with 1 threads and [-client]:
granularity_nanotime: 29.322 +- 1.293 ns

latency_nanotime: 29.910 +- 1.626 ns

Running with 1 threads and [-server]:
granularity_nanotime: 28.990 +- 0.019 ns

latency_nanotime: 30.862 +- 6.622 ns

Slide 35/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Typical Case [Windows]

Java(TM) SE Runtime Environment , 1.7.0_51 -b13
Java HotSpot(TM) 64-Bit Server VM, 24.51-b03
Windows 7, 6.1, amd64

Running with 1 threads and [-client]:
granularity_nanotime: 371,419 +- 1,541 ns

latency_nanotime: 14,415 +- 0,389 ns

Running with 1 threads and [-server]:
granularity_nanotime: 371,237 +- 1,239 ns

latency_nanotime: 14,326 +- 0,308 ns

Slide 36/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Epic Case [Windows]

Java(TM) SE Runtime Environment , 1.8.0- b132
Java HotSpot(TM) 64-Bit Server VM, 25.0-b70
Windows Server 2008, 6.0, amd64

Running with 32 threads and [-client]:
granularity_nanotime: 15137.504 +- 97.132 ns

latency_nanotime: 15190.080 +- 1760.500 ns

Running with 32 threads and [-server]:
granularity_nanotime: 15118.159 +- 121.671 ns

latency_nanotime: 15176.690 +- 1504.406 ns

Slide 37/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Model Experiment

� But if System.nanoTime() is heavy and potentially
non-scaling, then we run the system into oblivion?

� Let’s figure out when it starts to Detroit:

@Param
int backoff;

@Benchmark
public long nanotime () {

Blackhole.consumeCPU(backoff);
return System.nanoTime ();

}

Slide 38/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Seems OK [Linux]

10
1

10
2

10
3

10
4

10
5

0 4 8 12 16 20 24 28 32 36 40 44 48
threads

S
y
s
te

m
.n

a
n
o
T

im
e
 +

 b
a
c
k
o
ff
,
n
s
e
c

0 1 2 3 4log10(backoff)

System.nanoTime() latency vs. backoff [Linux]

Slide 39/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Double U. Tee. Eff. [Windows]

10
1

10
2

10
3

10
4

10
5

0 4 8 12 16 20 24 28 32
threads

S
y
s
te

m
.n

a
n
o
T

im
e
 +

 b
a
c
k
o
ff
,
n
s
e
c

0 1 2 3 4log10(backoff)

System.nanoTime() latency vs. backoff [Windows]

Slide 40/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Paying for Monotonicity [Solaris]

10
1

10
2

10
3

10
4

10
5

0 4 8 12 16 20 24 28 32
threads

S
y
s
te

m
.n

a
n
o
T

im
e
 +

 b
a
c
k
o
ff
,
n
s
e
c

0 1 2 3 4log10(backoff)

System.nanoTime() latency vs. backoff [Solaris]

Slide 41/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Typical Case [Mac OS X]

Java(TM) SE Runtime Environment , 1.8.0- b132
Java HotSpot(TM) 64-Bit Server VM, 25.0-b70
Mac OS X, 10.9.2 , x86_64

Running with 1 threads and [-server]:
granularity_nanotime: 1009.623 +- 2.140 ns

latency_nanotime: 44.145 +- 1.449 ns

Running with 4 threads and [-server]:
granularity_nanotime: 1044.703 +- 32.103 ns

latency_nanotime: 56.111 +- 3.397 ns

Slide 42/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Summing Up

System.nanoTime – is a new String.intern!

� Giving users the nanoTime is handing over a loaded gun
� nanoTime is may and should be used in selected cases,

when you can foresee all disadvantages
� Most frequently, the direct measurement is not available,

and we have to derive the models from the collateral
evidence

Slide 43/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Timers: Stop Kidding Already?

Our code blocks are heavy enough
to keep nanoTime() granularity

and latency at bay!

Slide 44/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Omission: Heavy Benchmark is Heavy

public long measure () {
long ops = 0;
long startTime = System.nanoTime ();
while(! isDone) {

setup (); // want to skip this
work ();
ops++;

}
return ops / (System.nanoTime () - startTime);

}

Slide 45/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Omission: Measuring the Separate Block

public long measure () {
long ops = 0;
long realTime = 0;
while(! isDone) {

setup (); // skip this
long time = System.nanoTime ();

work ();
realTime += (System.nanoTime () - time);
ops++;

}
return ops / realTime;

}

Slide 46/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Omission: Checking Empty setup()...

Measuring the throughput... it grows past the CPU count?!

0

200

400

600

0 4 8 12 16 20 24 28 32
Threads

th
ro

u
g
h
p
u
t,
 o

p
s
/u

s

External loop timestamps Sum over per−iteration timestamps

Slide 47/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Omission: Hint

public long measure () {
long ops = 0;
long realTime = 0;
while(! isDone) {

setup (); // skip this
long time = System.nanoTime ();

work ();
realTime += (System.nanoTime () - time);
ops++;
...WHOOPS, WE DE-SCHEDULE HERE...

}
return ops / realTime;

}

Slide 48/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Omission: Basic Example

� Measuring the operation time, 10 ms/op on average ⇒
each 𝑖-th thread thinks its individual throughput is 𝜆𝑖 =
100 ops/sec

� We have two threads, and therefore
𝑁∑︀
𝑖=1

𝜆𝑖 = 200 ops/sec

Slide 49/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Omission: A Fistful of Threads More

� Each thread still believes 𝜆𝑖 = 100 ops/sec!

� Now we have four threads ⇒
𝑁∑︀
𝑖=1

𝜆𝑖 = 400 ops/sec

Slide 50/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Omission: A Fistful of Threads More

� Each thread still believes 𝜆𝑖 = 100 ops/sec!

� Now we have four threads ⇒
𝑁∑︀
𝑖=1

𝜆𝑖 = 400 ops/sec

Slide 50/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Omission: Conclusion

"Phillip J. Fry is experiencing
the major safepoint event"

Timers skip the beats, and
may grossly

under/overestimate the
durations.

� Every performance metric that
includes time is at fault

� Very easy to blow up on
overloaded systems

� Very easy to blow up when
measurers coordinate with
workload

Slide 51/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

S.S.: (TGIF) Thank God It’s Fibonacci

Is there a problem, officer?

public class FibonacciGen {
BigInteger n1 = ONE; BigInteger n2 = ZERO;

@Benchmark
public BigInteger next() {

BigInteger cur = n1.add(n2);
n2 = n1; n1 = cur;
return cur;

}
}

Slide 52/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

S.S.: Timing Each Call...

Whoops, this benchmark has no steady state, indeed:

2.5

5.0

7.5

10.0

12.5

0 25000 50000 75000 100000
call #

ti
m

e
 t
o
 c

a
ll
,
u
s
e
c

Slide 53/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

S.S.: Pitfalls

No steady state – can not use the time-based benchmarks!
The longer we measure, the «slower» the result appears:

duration, sec throughput, us/op
1 5.013 ± 0.006
2 7.087 ± 0.009
4 10.021 ± 0.017
8 14.159 ± 0.010

Slide 54/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

S.S.: Pick Your Poison

Time-based benchmarks:
� Measuring in God knows what conditions
� How should one compare two implementations?

(if you are lucky, and your performance model is linear...)

Work-based benchmarks:
� Burning ourselves with timers latency/granularity
� Burning ourselves with omission
� Burning ourselves with transients

Slide 55/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

S.S.: Conclusion

«The only winning move
is not to play at all»

Non-steady state benchmarks force
you to choose between all the bad

options.

Non-steady state benchmarks are
the large P.I.T.A!

Slide 56/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

S.S.: Palliative Relief

Measure in large batches!

@Setup(Level.Iteration)
public void setup () {

n1 = BigInteger.ZERO; n2 = BigInteger.ONE;
}

@Benchmark
@Measurement(batchSize = 5000)
public BigInteger next() {

BigInteger cur = n1.add(n2);
n2 = n1; n1 = cur;
return cur;

}

Slide 57/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering

Slide 58/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Comparisons

You want your results to be comparable.

� Every tiny little uncontrolled detail is a free variable
� Libraries are the large complexes of tiny details
� Language runtimes are galaxies of tiny details

Slide 59/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Story

This is a weird story of Java vs. Scala comparison coming from
StackOverflow, where people are bound to that believe

tail-recursion optimization is the best thing that happened in
computer science since the sliced bread.

Complete story and narrative is here:
http://shipilev.net/blog/2014/java-scala-divided-we-fail/

Slide 60/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://shipilev.net/blog/2014/java-scala-divided-we-fail/

Engineering: Scala’s @tailrec

@tailrec private def
isDivisible(v: Int , d: Int , l: Int): Boolean = {

if (d > l) true
else (v % d == 0) && isDivisible(v, d + 1, l)

}

@Benchmark
def test (): Int = {

var v = 10
while(! isDivisible(v, 2, l))

v += 2
v

}

Slide 61/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Java’s absence-of-tailrec

private boolean isDivisible(int v, int d, int l) {
if (d > l) return true;
else

return (v % d == 0) && isDivisible(v, d+1, l);
}

@Benchmark
public int test() {

int v = 10;
while(! isDivisible(v, 2, l))

v += 2;
return val;

}

Slide 62/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Measuring

Benchmark lim Score Score error Units

ScalaBench 1 0.002 0.000 us/op
ScalaBench 5 0.494 0.005 us/op
ScalaBench 10 24.228 0.268 us/op
ScalaBench 15 3457.733 33.070 us/op
ScalaBench 20 2505634.259 15366.665 us/op
JavaBench 1 0.002 0.000 us/op
JavaBench 5 0.252 0.001 us/op
JavaBench 10 12.782 0.325 us/op
JavaBench 15 1615.890 7.647 us/op
JavaBench 20 1053187.731 20502.217 us/op

Slide 63/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Profiling Java

Result: 12.719 +-(99.9%) 0.284 us/op [Average]

....[Thread state distributions].......................
91.3% RUNNABLE
8.7% WAITING

....[Thread state: RUNNABLE]...........................
58.0% 63.5% n.s.JavaBench.isDivisible
32.9% 36.1% n.s.JavaBench.test

....[Thread state: WAITING]............................
8.7% 100.0% <irrelevant>

Slide 64/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Profiling Scala

Result: 24.076 +-(99.9%) 0.728 us/op [Average]

....[Thread state distributions].......................
91.4% RUNNABLE
8.6% WAITING

....[Thread state: RUNNABLE]...........................
90.6% 99.1% n.s.ScalaBench.test
0.9% 0.9% n.s.generated.ScalaBench_test.test_avgt_jmhLoop

....[Thread state: WAITING]............................
8.6% 100.0% <irrelevant>

Slide 65/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Coarse-grained profilers

Coarse-grained (method-level) profilers are useless in
diagnosing the problems in nano- and

micro-benchmarks.

Additional penalty points if they are sampling at
safepoints.

Slide 66/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: JMH perfasm

java -jar benchmarks.jar ... -prof perfasm

Surprisingly easy to marry these three things:
1. Linux perf provides light-weight PMU sampling
2. JVM debug info maps events back to VM methods
3. -XX:+PrintAssembly maps events back to Java code

Actually, there are lots of good profilers already, but most of
the time you don’t need «big guns» to quickly analyze

benchmarks.

Slide 67/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Hottest thing in Scala

One true and solid x86 division:

clocks insns code

; n.s.g.ScalaBench_test::test_avgt_jmhLoop
...

0.27% 0.17% cltd
2.24% 17.26% idiv %ecx

77.99% 66.44% test %edx,%edx
...

How can you possibly be 2x faster than this?

Slide 68/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Hottest thing in Java

clocks insns code

; n.s.JavaBench::isDivisible
...

1.68% 2.76% cltd
0.06% 0.16% idiv %ecx

27.59% 36.37% test %edx,%edx
...
0.04% cltd

idiv %r10d
12.24% 1.54% test %edx,%edx
...
0.01% callq <recursive-call>

Slide 69/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Second hottest thing in Java

clocks insns code

; n.s.g.JavaBench_test::test_avgt_jmhLoop
...
1.34% 0.21% imul $0x55555556,%rdx,%rdx
1.25% 0.20% sar $0x20,%rdx
1.15% 2.36% mov %edx,%esi
0.95% 1.51% sub %r10d,%esi ; irem

...

Beautiful trick of substituting the remainder with constant
multiplication and binary shift! 2

2http://www.hackersdelight.org/divcMore.pdf
Slide 70/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://www.hackersdelight.org/divcMore.pdf

Engineering: Second hottest thing in Java

clocks insns code

; n.s.g.JavaBench_test::test_avgt_jmhLoop
...
1.34% 0.21% imul $0x55555556,%rdx,%rdx
1.25% 0.20% sar $0x20,%rdx
1.15% 2.36% mov %edx,%esi
0.95% 1.51% sub %r10d,%esi ; irem

...

Beautiful trick of substituting the remainder with constant
multiplication and binary shift! 2

2http://www.hackersdelight.org/divcMore.pdf
Slide 70/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://www.hackersdelight.org/divcMore.pdf

Engineering: Quick Explanation

// inlines twice , specializes for d={2,3}
private boolean isDivisble(int v, int d, int l) {

...
return (v % d == 0) && isDivisble(v, d+1, l);

}

@Benchmark
public int test() {

int v = 10;
while(! isDivisble(v, 2, l))

v += 2;
return val;

}

Slide 71/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Make «d» unpredictable

Benchmark lim Score Score error Units

ScalaBench 1 0.002 0.000 us/op
ScalaBench 5 0.489 0.002 us/op
ScalaBench 10 23.777 0.116 us/op
ScalaBench 15 3379.870 5.737 us/op
ScalaBench 20 2468845.944 2413.573 us/op
JavaBench 1 0.003 0.000 us/op
JavaBench 5 0.465 0.001 us/op
JavaBench 10 22.989 0.095 us/op
JavaBench 15 3453.116 16.390 us/op
JavaBench 20 2518726.451 4374.482 us/op

Slide 72/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Engineering: Conclusion

«Days since the last
benchmarking accident: 0»

(@gvsmirnov)

Benchmarks without
analysis make me a really

sad panda.

You show me nice charts:
Language A vs. Language

B, Nashorn vs. Rhino, Graal
vs. C2, etc, and all I see is

BAYESIAN NOISE

Slide 73/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

https://twitter.com/gvsmirnov/status/430749834921115648

Fin

Slide 74/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Fin: Conclusion

«If you don’t analyze the
benchmarks, you’ve gonna waste

a good time»

The superficial conclusions
almost always feed on
existing biases, and are
almost always wrong.

Benchmarks are for
understanding the Reality,
not for reinforcing your
prejudices about the

Universe.

Slide 75/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

	Intro
	Theory
	Scientific
	Models
	Timers
	Omission
	S.S.

	Engineering
	Fin

