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The following is intended to outline our general product
direction. It is intended for information purposes only, and may
not be incorporated into any contract. It is not a commitment
to deliver any material, code, or functionality, and should not
be relied upon in making purchasing decisions. The
development, release, and timing of any features or
functionality described for Oracle’s products remains at the
sole discretion of Oracle.
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Intro
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Intro: Warming up...

«How much for instantiating a String?»

long time1 = System.nanoTime ();
for (int i = 0; i < 1000; i++) {

String s = new String("");
}
long time2 = System.nanoTime ();
System.out.println("Time:" + (time2 - time1 ));
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Theory
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Theory: Why would people benchmark?

In the name of...
1. Holywar: Node.js – But Java... – Node.js!
2. Marketing: Check we are meeting the (release) criteria
3. Engineering: Isolate a performance phenomena, make a

reference point for improvements
4. Science: Understand the performance model, and predict

the future behavior
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Theory: In the name of Holywar

My favorite example: Computer Language Benchmarks Game:1

� Most comparisons are hardly fair: e.g. AOT vs. JIT
� Measures what exactly? E.g. pidigits measures the speed

of FFI to GNU GMP
� Lots of disclaimers these results are misrepresentative of

the real world (alas, nobody reads them or cares enough)
� People love it, since it gives you numbers, which you can

then take as your shield and sword in Internet debates

1http://benchmarksgame.alioth.debian.org/
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Theory: In the name of Marketing

My favorite example: SPEC benchmarks
� Reference benchmark suites, agreed upon by the vendors
� Provide the reference points, for which one can set the

success criteria, use in adverts, tweet obnoxious
competitive data, etc.

� It does not matter how representative they are – it
matters they are The Benchmarks Born at the Fiery
Summit of Orodruin
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Theory: In the name of Engineering

«If you can’t measure it, you can’t optimize it»
� Need the conditions where the system is running in a

predictable state, so we are able to quantify improvements
� These benchmarks usually focus on particular pieces of

system, and have more resolution than «marketing»
benchmarks
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Theory: In the name of Science

«Science Town PD: To Explain and Predict»
� Derive the sound performance model from the results
� Use the performance model to predict the future

behavior: keep calm and deploy to production
� The most sweaty, and the most reliable target for

benchmarking
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Theory: Why would people benchmark?

In the name of...
1. Holywar: Node.js – But Java... – Node.js!
2. Marketing: check we are meeting the (release) criteria
3. Engineering: isolate a performance phenomena, make a

reference point for improvements
4. Science: understand the performance model, and predict

the future behavior
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Theory: «Scientific» approach

Ultimate Question

How does a benchmark react on changing the external
conditions?

Or, how far the actual performance model is from the
mental one?

1. Fool-proof: do these results even make any sense?
2. Negative control: benchmark reacts on change, but

shouldn’t?
3. Positive control: benchmark should not react on change,

but does?
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Theory: «Engineering» approach

Ultimate Question

Why doesn’t my benchmark run faster?

Directly observe if our experimental setup is sane:
1. Where are the bottlenecks?
2. Do we expect those things to be bottlenecks?
3. Are these benchmarks running in the same mode?
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Theory: JMH

JMH is a Serious Business:
http://openjdk.java.net/projects/code-tools/jmh/

� When used properly, helps to mitigate VM quirks
� Aids running lots of benchmarks in different conditions
� Internal profiling to quickly triage the issues
� JVM languages support: Java, Scala, Groovy, Kotlin
� ...or anything else callable from Java (e.g. Nashorn, etc.)
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Scientific
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Scientific: Story

In this section, we explore some of the methodology
implications when doing the benchmarks. People tend to think

this story is a deal-breaker when trying to build their own
benchmark harnesses.

Complete story and narrative is here:
http://shipilev.net/blog/2014/nanotrusting-nanotime/
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Models: Model Problem

«Jessie, it’s time to cook some
benchmarks...»

«What is the cost of
volatile write?»

It seems like a very easy question...
Let’s measure it! Shall we?
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Models: Easy...

public class VolatileWrite {
int v; volatile int vv;

@Benchmark
int baseline1 () { return 42; }

@Benchmark
int incrPlain () { return v++; }

@Benchmark
int incrVolatile () { return vv++; }

}
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Models: ...does it!

public class VolatileWrite {
int v; volatile int vv;

@Benchmark
int baseline1 () { return 42; } // 2.0 ns

@Benchmark
int incrPlain () { return v++; } // 3.5 ns

@Benchmark
int incrVolatile () { return vv++; } // 15.1 ns

}
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Models: Fatal Flaw

volatile int vv;

@Benchmark
int incrVolatile () { return vv++; }

� Measuring in very unfavorable case, when benchmark is
choked by volatiles. We are pushing the system to its
«edge» condition. This almost never happens in
production.

� What do we really need to know is:
«What is the volatile cost in realistic conditions?»
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Models: Backoffs

@Param int tokens;

volatile int vv;

@Benchmark
int incrVolatile () {

Blackhole.consumeCPU(tokens ); // burn time
return vv++;

}

� «Burn off» a few cycles before doing heavy-weight op
� Juggle tokens ⇒ juggle operation mix
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Models: Backoffs

� Take a few baselines while we are at it: which one is
correct?

@Benchmark
void baseline_Plain ()

{ BH.consumeCPU(tokens ); }

@Benchmark
int baseline_Return42 ()

{ BH.consumeCPU(tokens ); return 42; }

@Benchmark
int baseline_ReturnPlain ()

{ BH.consumeCPU(tokens ); return v; }
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Models: Measuring...

«Bender B.
Rodriguez

regrets using
Excel to draw
the charts»
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Models: Subtracting baselinePlain

� Absolute volatile cost gets compensated very well!
� Can we really subtract the baselines?
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Models: Subtracting baseline_Return42

� We added some code in the baseline, and it runs faster?
� Nothing surprising: performance is not usually composable

−5

0

5

10

15

0 10 20 30
backoff

n
s
e

c
/o

p

label baseline_Return42 incrPlain incrVolatile

Slide 25/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Models: WTF is different?
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Models: WTF is different?
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Models: Bottom Line

� Different baselines act differently: they are tests
themselves!

� Therefore, we can just compare plain and volatile:
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Models: Conclusion

This is what models are for!

� Explore the system behavior outside the (randomly)
chosen configuration points

� Allow to predict the system behavior in future conditions
� Catch the experimental setup problems (control!)
� Combinatorial experiments help to create different

operation mixes, and derive the individual op costs from
their composite performance
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Models: You Are Joking, Right?

«Combinatorial experiments help to create different operation
mixes, and derive the individual op costs from their composite

performance»

System.nanoTime!
Measure each part individually!
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Timers: Verifying infrastructure

Why not?

// call continuously
public long measure () {

long startTime = System.nanoTime ();
work ();
return System.nanoTime () - startTime;

}
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Timers: Measuring Latency

Latency = time to call System.nanoTime

@Benchmark
public long latency_nanotime () {

return System.nanoTime ();
}
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Timers: Measuring Granularity

Granularity = the minimum non-zero difference between two
consecutive calls

private long lastValue;

@Benchmark
public long granularity_nanotime () {

long cur;
do {

cur = System.nanoTime ();
} while (cur == lastValue );
lastValue = cur;
return cur;

}
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Timers: Typical Case [Linux]

Java(TM) SE Runtime Environment , 1.7.0_45 -b18
Java HotSpot(TM) 64-Bit Server VM, 24.45-b08
Linux , 3.13.8-1-ARCH , amd64

Running with 1 threads and [-client ]:
granularity_nanotime: 26.300 +- 0.205 ns

latency_nanotime: 25.542 +- 0.024 ns

Running with 1 threads and [-server ]:
granularity_nanotime: 26.432 +- 0.191 ns

latency_nanotime: 26.276 +- 0.538 ns
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Timers: Typical Case [Solaris]

Java(TM) SE Runtime Environment , 1.8.0- b132
Java HotSpot(TM) 64-Bit Server VM, 25.0-b70
SunOS , 5.11, amd64

Running with 1 threads and [-client ]:
granularity_nanotime: 29.322 +- 1.293 ns

latency_nanotime: 29.910 +- 1.626 ns

Running with 1 threads and [-server ]:
granularity_nanotime: 28.990 +- 0.019 ns

latency_nanotime: 30.862 +- 6.622 ns
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Timers: Typical Case [Windows]

Java(TM) SE Runtime Environment , 1.7.0_51 -b13
Java HotSpot(TM) 64-Bit Server VM, 24.51-b03
Windows 7, 6.1, amd64

Running with 1 threads and [-client ]:
granularity_nanotime: 371,419 +- 1,541 ns

latency_nanotime: 14,415 +- 0,389 ns

Running with 1 threads and [-server ]:
granularity_nanotime: 371,237 +- 1,239 ns

latency_nanotime: 14,326 +- 0,308 ns
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Timers: Epic Case [Windows]

Java(TM) SE Runtime Environment , 1.8.0- b132
Java HotSpot(TM) 64-Bit Server VM, 25.0-b70
Windows Server 2008, 6.0, amd64

Running with 32 threads and [-client ]:
granularity_nanotime: 15137.504 +- 97.132 ns

latency_nanotime: 15190.080 +- 1760.500 ns

Running with 32 threads and [-server ]:
granularity_nanotime: 15118.159 +- 121.671 ns

latency_nanotime: 15176.690 +- 1504.406 ns
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Timers: Model Experiment

� But if System.nanoTime() is heavy and potentially
non-scaling, then we run the system into oblivion?

� Let’s figure out when it starts to Detroit:

@Param
int backoff;

@Benchmark
public long nanotime () {

Blackhole.consumeCPU(backoff );
return System.nanoTime ();

}
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Timers: Seems OK [Linux]
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Timers: Double U. Tee. Eff. [Windows]
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Timers: Paying for Monotonicity [Solaris]
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Timers: Typical Case [Mac OS X]

Java(TM) SE Runtime Environment , 1.8.0- b132
Java HotSpot(TM) 64-Bit Server VM, 25.0-b70
Mac OS X, 10.9.2 , x86_64

Running with 1 threads and [-server ]:
granularity_nanotime: 1009.623 +- 2.140 ns

latency_nanotime: 44.145 +- 1.449 ns

Running with 4 threads and [-server ]:
granularity_nanotime: 1044.703 +- 32.103 ns

latency_nanotime: 56.111 +- 3.397 ns
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Timers: Summing Up

System.nanoTime – is a new String.intern!

� Giving users the nanoTime is handing over a loaded gun
� nanoTime is may and should be used in selected cases,

when you can foresee all disadvantages
� Most frequently, the direct measurement is not available,

and we have to derive the models from the collateral
evidence
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Timers: Stop Kidding Already?

Our code blocks are heavy enough
to keep nanoTime() granularity

and latency at bay!
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Omission: Heavy Benchmark is Heavy

public long measure () {
long ops = 0;
long startTime = System.nanoTime ();
while(! isDone) {

setup (); // want to skip this
work ();
ops++;

}
return ops / (System.nanoTime () - startTime );

}
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Omission: Measuring the Separate Block

public long measure () {
long ops = 0;
long realTime = 0;
while(! isDone) {

setup (); // skip this
long time = System.nanoTime ();

work ();
realTime += (System.nanoTime () - time);
ops++;

}
return ops / realTime;

}
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Omission: Checking Empty setup()...

Measuring the throughput... it grows past the CPU count?!
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Omission: Hint

public long measure () {
long ops = 0;
long realTime = 0;
while(! isDone) {

setup (); // skip this
long time = System.nanoTime ();

work ();
realTime += (System.nanoTime () - time);
ops++;
...WHOOPS, WE DE-SCHEDULE HERE...

}
return ops / realTime;

}
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Omission: Basic Example

� Measuring the operation time, 10 ms/op on average ⇒
each 𝑖-th thread thinks its individual throughput is 𝜆𝑖 =
100 ops/sec

� We have two threads, and therefore
𝑁∑︀
𝑖=1

𝜆𝑖 = 200 ops/sec
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Omission: A Fistful of Threads More

� Each thread still believes 𝜆𝑖 = 100 ops/sec!

� Now we have four threads ⇒
𝑁∑︀
𝑖=1

𝜆𝑖 = 400 ops/sec
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Omission: A Fistful of Threads More
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Omission: Conclusion

"Phillip J. Fry is experiencing
the major safepoint event"

Timers skip the beats, and
may grossly

under/overestimate the
durations.

� Every performance metric that
includes time is at fault

� Very easy to blow up on
overloaded systems

� Very easy to blow up when
measurers coordinate with
workload
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S.S.: (TGIF) Thank God It’s Fibonacci

Is there a problem, officer?

public class FibonacciGen {
BigInteger n1 = ONE; BigInteger n2 = ZERO;

@Benchmark
public BigInteger next() {

BigInteger cur = n1.add(n2);
n2 = n1; n1 = cur;
return cur;

}
}
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S.S.: Timing Each Call...

Whoops, this benchmark has no steady state, indeed:
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S.S.: Pitfalls

No steady state – can not use the time-based benchmarks!
The longer we measure, the «slower» the result appears:

duration, sec throughput, us/op
1 5.013 ± 0.006
2 7.087 ± 0.009
4 10.021 ± 0.017
8 14.159 ± 0.010
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S.S.: Pick Your Poison

Time-based benchmarks:
� Measuring in God knows what conditions
� How should one compare two implementations?

(if you are lucky, and your performance model is linear...)

Work-based benchmarks:
� Burning ourselves with timers latency/granularity
� Burning ourselves with omission
� Burning ourselves with transients
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S.S.: Conclusion

«The only winning move
is not to play at all»

Non-steady state benchmarks force
you to choose between all the bad

options.

Non-steady state benchmarks are
the large P.I.T.A!
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S.S.: Palliative Relief

Measure in large batches!

@Setup(Level.Iteration)
public void setup () {

n1 = BigInteger.ZERO; n2 = BigInteger.ONE;
}

@Benchmark
@Measurement(batchSize = 5000)
public BigInteger next() {

BigInteger cur = n1.add(n2);
n2 = n1; n1 = cur;
return cur;

}
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Engineering
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Engineering: Comparisons

You want your results to be comparable.

� Every tiny little uncontrolled detail is a free variable
� Libraries are the large complexes of tiny details
� Language runtimes are galaxies of tiny details
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Engineering: Story

This is a weird story of Java vs. Scala comparison coming from
StackOverflow, where people are bound to that believe

tail-recursion optimization is the best thing that happened in
computer science since the sliced bread.

Complete story and narrative is here:
http://shipilev.net/blog/2014/java-scala-divided-we-fail/
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Engineering: Scala’s @tailrec

@tailrec private def
isDivisible(v: Int , d: Int , l: Int): Boolean = {

if (d > l) true
else (v % d == 0) && isDivisible(v, d + 1, l)

}

@Benchmark
def test (): Int = {

var v = 10
while(! isDivisible(v, 2, l))

v += 2
v

}
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Engineering: Java’s absence-of-tailrec

private boolean isDivisible(int v, int d, int l) {
if (d > l) return true;
else

return (v % d == 0) && isDivisible(v, d+1, l);
}

@Benchmark
public int test() {

int v = 10;
while(! isDivisible(v, 2, l))

v += 2;
return val;

}
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Engineering: Measuring

Benchmark lim Score Score error Units
-----------------------------------------------------
ScalaBench 1 0.002 0.000 us/op
ScalaBench 5 0.494 0.005 us/op
ScalaBench 10 24.228 0.268 us/op
ScalaBench 15 3457.733 33.070 us/op
ScalaBench 20 2505634.259 15366.665 us/op
JavaBench 1 0.002 0.000 us/op
JavaBench 5 0.252 0.001 us/op
JavaBench 10 12.782 0.325 us/op
JavaBench 15 1615.890 7.647 us/op
JavaBench 20 1053187.731 20502.217 us/op
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Engineering: Profiling Java

Result: 12.719 +-(99.9%) 0.284 us/op [Average]

....[Thread state distributions].......................
91.3% RUNNABLE
8.7% WAITING

....[Thread state: RUNNABLE]...........................
58.0% 63.5% n.s.JavaBench.isDivisible
32.9% 36.1% n.s.JavaBench.test

....[Thread state: WAITING]............................
8.7% 100.0% <irrelevant>
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Engineering: Profiling Scala

Result: 24.076 +-(99.9%) 0.728 us/op [Average]

....[Thread state distributions].......................
91.4% RUNNABLE
8.6% WAITING

....[Thread state: RUNNABLE]...........................
90.6% 99.1% n.s.ScalaBench.test
0.9% 0.9% n.s.generated.ScalaBench_test.test_avgt_jmhLoop

....[Thread state: WAITING]............................
8.6% 100.0% <irrelevant>
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Engineering: Coarse-grained profilers

Coarse-grained (method-level) profilers are useless in
diagnosing the problems in nano- and

micro-benchmarks.

Additional penalty points if they are sampling at
safepoints.
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Engineering: JMH perfasm

java -jar benchmarks.jar ... -prof perfasm

Surprisingly easy to marry these three things:
1. Linux perf provides light-weight PMU sampling
2. JVM debug info maps events back to VM methods
3. -XX:+PrintAssembly maps events back to Java code

Actually, there are lots of good profilers already, but most of
the time you don’t need «big guns» to quickly analyze

benchmarks.
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Engineering: Hottest thing in Scala

One true and solid x86 division:

clocks insns code
-------------------------------------------------------
; n.s.g.ScalaBench_test::test_avgt_jmhLoop
...

0.27% 0.17% cltd
2.24% 17.26% idiv %ecx

77.99% 66.44% test %edx,%edx
...

How can you possibly be 2x faster than this?
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Engineering: Hottest thing in Java

clocks insns code
-------------------------------------------------------
; n.s.JavaBench::isDivisible
...

1.68% 2.76% cltd
0.06% 0.16% idiv %ecx

27.59% 36.37% test %edx,%edx
...
0.04% cltd

idiv %r10d
12.24% 1.54% test %edx,%edx
...
0.01% callq <recursive-call>
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Engineering: Second hottest thing in Java

clocks insns code
-------------------------------------------------------
; n.s.g.JavaBench_test::test_avgt_jmhLoop
...
1.34% 0.21% imul $0x55555556,%rdx,%rdx
1.25% 0.20% sar $0x20,%rdx
1.15% 2.36% mov %edx,%esi
0.95% 1.51% sub %r10d,%esi ; irem

...

Beautiful trick of substituting the remainder with constant
multiplication and binary shift! 2

2http://www.hackersdelight.org/divcMore.pdf
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Engineering: Quick Explanation

// inlines twice , specializes for d={2,3}
private boolean isDivisble(int v, int d, int l) {

...
return (v % d == 0) && isDivisble(v, d+1, l);

}

@Benchmark
public int test() {

int v = 10;
while(! isDivisble(v, 2, l))

v += 2;
return val;

}
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Engineering: Make «d» unpredictable

Benchmark lim Score Score error Units
-----------------------------------------------------
ScalaBench 1 0.002 0.000 us/op
ScalaBench 5 0.489 0.002 us/op
ScalaBench 10 23.777 0.116 us/op
ScalaBench 15 3379.870 5.737 us/op
ScalaBench 20 2468845.944 2413.573 us/op
JavaBench 1 0.003 0.000 us/op
JavaBench 5 0.465 0.001 us/op
JavaBench 10 22.989 0.095 us/op
JavaBench 15 3453.116 16.390 us/op
JavaBench 20 2518726.451 4374.482 us/op
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Engineering: Conclusion

«Days since the last
benchmarking accident: 0»

(@gvsmirnov)

Benchmarks without
analysis make me a really

sad panda.

You show me nice charts:
Language A vs. Language

B, Nashorn vs. Rhino, Graal
vs. C2, etc, and all I see is

BAYESIAN NOISE
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Fin
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Fin: Conclusion

«If you don’t analyze the
benchmarks, you’ve gonna waste

a good time»

The superficial conclusions
almost always feed on
existing biases, and are
almost always wrong.

Benchmarks are for
understanding the Reality,
not for reinforcing your
prejudices about the

Universe.

Slide 75/75. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.


	Intro
	Theory
	Scientific
	Models
	Timers
	Omission
	S.S.

	Engineering
	Fin

