

Table of Contents

JVM Anatomy Quarks: 2021-07-31 Snapshot

About, Disclaimers, Contacts

JVM Anatomy Quark #1: Lock Coarsening and Loops
JVM Anatomy Quark #2: Transparent Huge Pages
JVM Anatomy Quark #3: GC Design and Pauses

JVM Anatomy Quark #4: TLAB allocation

JVM Anatomy Quark #5: TLABs and Heap Parsability
JVM Anatomy Quark #6: New Object Stages

JVM Anatomy Quark #7: Initialization Costs

JVM Anatomy Quark #8: Local Variable Reachability
JVM Anatomy Quark #9: JNI Critical and GC Locker

JVM Anatomy Quark #10:
JVM Anatomy Quark #11:
JVM Anatomy Quark #12:
JVM Anatomy Quark #13:
JVM Anatomy Quark #14:

String.intern()

Moving GC and Locality
Native Memory Tracking
Intergenerational Barriers
Constant Variables

JVM Anatomy Quark #15: Just-In-Time Constants

JVM Anatomy Quark #16:
JVM Anatomy Quark #17:
JVM Anatomy Quark #18:
JVM Anatomy Quark #19:
JVM Anatomy Quark #20:
JVM Anatomy Quark #21:
JVM Anatomy Quark #22:
JVM Anatomy Quark #23:
JVM Anatomy Quark #24:
JVM Anatomy Quark #25:
JVM Anatomy Quark #26:
JVM Anatomy Quark #27:
JVM Anatomy Quark #28:
JVM Anatomy Quark #29:
JVM Anatomy Quark #30:

Megamorphic Virtual Calls
Trust Nonstatic Final Fields
Scalar Replacement

Lock Elision

FPU Spills

Heap Uncommit
Safepoint Polls
Compressed References
Object Alignment

Implicit Null Checks
Identity Hash Code
Compiler Blackholes

Frequency-Based Code Layout

Uncommon Traps
Conditional Moves

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quarks_2021_07_31_snapshot
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_about_disclaimers_contacts
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_1_lock_coarsening_and_loops
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_2_transparent_huge_pages
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_3_gc_design_and_pauses
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_4_tlab_allocation
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_5_tlabs_and_heap_parsability
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_6_new_object_stages
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_7_initialization_costs
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_8_local_variable_reachability
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_9_jni_critical_and_gc_locker
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_10_string_intern
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_11_moving_gc_and_locality
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_12_native_memory_tracking
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_13_intergenerational_barriers
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_14_constant_variables
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_15_just_in_time_constants
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_16_megamorphic_virtual_calls
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_17_trust_nonstatic_final_fields
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_18_scalar_replacement
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_19_lock_elision
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_20_fpu_spills
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_21_heap_uncommit
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_22_safepoint_polls
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_23_compressed_references
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_24_object_alignment
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_25_implicit_null_checks
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_26_identity_hash_code
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_27_compiler_blackholes
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_28_frequency_based_code_layout
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_29_uncommon_traps
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_jvm_anatomy_quark_30_conditional_moves

JVM Anatomy Quarks: 2021-07-31 Snapshot

About, Disclaimers, Contacts

"JVM Anatomy Quarks" (https://shipilev.net/jvm/anatomy-quarks/) is the on-going mini-post series, where every post is describing
some elementary piece of knowledge about JVM. The name underlines the fact that the single post cannot be taken in isolation,
and most pieces described here are going to readily interact with each other.

The post should take about 5-10 minutes to read. As such, it goes deep for only a single topic, a single test, a single benchmark, a
single observation. The evidence and discussion here might be anecdotal, not actually reviewed for errors, consistency, writing
'tyle, syntaxtic and semantically errors, duplicates, or also consistency. Use and/or trust this at your own risk.

‘ Aleksey Shipilév, JVM/Performance Geek
Red Hat Shout out at Twitter: @shipilev (http://twitter.com/shipilev); Questions, comments, suggestions: aleksey@shipilev.net
(mailto:aleksey@shipilev.net)

A This is a rolling release with all posts in one, generated at 2021-07-31.

https://shipilev.net/jvm/anatomy-quarks/
http://twitter.com/shipilev
mailto:aleksey@shipilev.net

JVM Anatomy Quark #1: Lock Coarsening and Loops

Do these play together at all?

Question

It is known that Hotspot does lock coarsening optimizations

(https://en.wikipedia.org/wiki/Java_performance#Escape_analysis_and_lock_coarsening) that can effectively merge several adjacent locking
blocks, thus reducing the locking overhead. It effectively converts this:

JAVA
synchronized (obj) {

// statements 1

}

synchronized (obj) {
// statements 2

¥

...into:

JAVA
synchronized (obj) {

// statements 1
// statements 2
}

Now, the interesting question that was posed today is, does Hotspot do this optimization for loops? E.g. having:

JAVA
for (...) {
synchronized (obj) {
// something
¥
}

...could it optimize into this?

JAVA
synchronized (this) {
for (...) {
// something
+
}

Theoretically, nothing prevents us from doing this. One might even see the optimization like a loop unswitching
(https://en.wikipedia.org/wiki/Loop_unswitching) on steroids, only for locks. However, the downside is potentially coarsening the lock
so much, the particular thread would hog the lock while executing a fat loop.

Experiment

The easiest way to approach answering this is to find the positive evidence current Hotspot does optimization like it. Luckily, it is
pretty simple with JMH (http://openjdk.java.net/projects/code-tools/jmh/). It is useful not only for building the benchmarks, but also for
the most important part of engineering, analyzing them. Let’s start with a simple benchmark:

https://en.wikipedia.org/wiki/Java_performance#Escape_analysis_and_lock_coarsening
https://en.wikipedia.org/wiki/Loop_unswitching
http://openjdk.java.net/projects/code-tools/jmh/

JAVA
@Fork(..., jvmArgsPrepend = {"-XX:-UseBiasedlLocking"})

@State(Scope.Benchmark)
public class LockRoach {
int x;

@Benchmark
@CompilerControl(CompilerControl.Mode.DONT_INLINE)
public void test() {
for (int ¢ = 0; c < 1000; c++) {
synchronized (this) {
X += 0x42;
}

(full source here)
There are a few important tricks here:
1. Disabling biased locking with -XX:-UseBiasedLocking avoids longer warmups, because biased locking is not started up
immediately, but instead waits 5 seconds through the initialization phase. (See BiasedLockingStartupDelay option).
2. Disabling inlining for @Benchmark method helps to separate it in the disassembly.

3. Adding up a magic number, 0x42 helps to quickly find the increment in the disassembly.

Running at 17 4790K, Linux x86_64, JDK EA 9b156:

Benchmark Mode Cnt Score Error Units
LockRoach. test avgt 5 5331.617 £ 19.051 ns/op

What can you tell from this number? You can’t tell anything, right? We need to look into what actually happened down below. -
prof perfasm is very useful for this, as it shows you the hottest regions in the generated code. Running with default settings
would tell that the hottest instructions are actual lock cmpxchg (compare-and-sets) that perform locking, and only print hot
things around them. Running with -prof perfasm:mergeMargin=1000 to coalesce these hot regions into a solid picture, one
would get this scary-at-first-sight piece of output.

Stripping it further down — the cascades of jumps are the locking/unlocking — and paying attention to the code that accumulates
the most cycles (first column), we can see that the hottest loop looks like this:

ASM

» 0x00007f455cc708c1: lea 0x20(%rsp) ,%rbx

| < blah-blah-blah, monitor enter > ; <--- coarsened!

| 0x00007f455cc70918: mov (%rsp),%r10 ; load $this

| 0x00007f455cc7091c: mov 0xc(%r10),%r11d ; load $this.x

| 0x00007f455cc70920: mov %r11d,%r10d ;o...hm...

| 0x00007f455cc70923: add $0x42,%r10d ;... hmmm. ..

| 0x00007f455cc70927: mov (%rsp),%r8 ;.. hmmmmm! . ..

| 0x00007f455cc7092b: mov %r10d,0xc(%r8) ; LOL Hotspot, redundant store, killed two lines below
| 0x00007f455cc7092f: add $0x108,%r11d ; add 0x108 = 0x42 * 4 <-- unrolled by 4
| 0x00007f455cc70936: mov %r11d,0xc(%r8) ; store $this.x back

| < blah-blah-blah, monitor exit > ; <--- coarsened!

| 0x00007f455cc709c6: add $0x4 ,%ebp ; ¢ += 4 <--- unrolled by 4

| 0x00007f455cc709c9: cmp $0x3e5, %ebp ; € < 10007

L 0x00007f455cc709cf: jl 0x00007f455cc708c1

Huh. The loop seems to be unrolled (https://en.wikipedia.org/wiki/Loop_unrolling) by 4, and then locks are coarsened within those 4
iterations! Okay then, if that happens due to loop unrolling, we can quantify the performance benefits of doing this limited
coarsening, but trimming down the unrolling with -XX:LoopUnrollLimit=1:

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/LockRoach.java
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/default.perfasm
https://en.wikipedia.org/wiki/Loop_unrolling

Benchmark Mode Cnt Score Error Units

Default
LockRoach. test avgt 5 5331.617 £ 19.051 ns/op

-XX:LoopUnrollLimit=1
LockRoach. test avgt 5 20679.043 + 3.133 ns/op

+

Whoa, 4x performance hit! That stands to reason, because we have already observed that the hottest things are lock cmpxchg
from locking. Naturally, 4x coarsened lock means 4x better throughput. Very cool, we can claim success and move on? Not yet,
we have to verify that disabling loop unrolling actually gives us what we want to compare against. perfasm seems to indicate it
does the similar hot loop, but with a single stride.

ASM
0x00007f964d0893d2: lea 0x20(%rsp) ,%rbx

2

| < blah-blah-blah, monitor enter >

| 0x00007f964d089429: mov (%rsp),%r10 ; load $this

| 0x00007f964d08942d: addl $0x42,0xc(%r10) ; $this.x += 0x42
| < blah-blah-blah, monitor exit >

| 0x00007f964d0894be: inc %ebp ;CH+

| 0x00007f964d0894c0: cmp $0x3e8, %ebp ; € < 10007

L 0x00007f964d0894c6: jl 0x00007f964d0893d2 ;

Ah, OK, everything checks out.

Observations

While lock coarsening does not work on the entire loop, another loop optimization —loop unrolling — sets up the stage for the
regular lock coarsening, once the intermediate representation starts to look as if there are N adjacent lock-unlock sequences.
This reaps the performance benefits, and helps to limit the scope of coarsening, to avoid over-coarsening over fat loops.

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/noUnroll.perfasm

JVM Anatomy Quark #2: Transparent Huge Pages

Question

What are Large Pages? What are Transparent Huge Pages? How does it help me?!

Theory

Virtual memory is taken for granted now. Only a few now remember, let alone do, some "real mode" programming, where you

are exposed to the actual physical memory. Instead, every process has its own virtual memory space, and that space is mapped

onto actual memory. That allows, for instance, for two processes have distinct data at same virtual address 0x42424242 , which
will be backed by different physical memory. Now, when a program does the access at that address, something should translate

that virtual address to physical one.

This is normally achieved by OS maintaining the "page table" (https://en.wikipedia.org/wiki/Page_table), and hardware doing the "page
table walk" through that table to translate the address. The whole thing gets easier when translations are maintained at page
granularity. But it is nevertheless not very cheap, and it needs to happen for every memory access! Therefore, there is also a
small cache of latest translations, Translation Lookaside Buffer (TLB) (https://en.wikipedia.org/wiki/Translation_lookaside_buffer). TLB is
usually very small, below 100 of entries, because it needs to be at least as fast as L1 cache, if not faster. For many workloads, TLB
misses and associated page table walks take significant time.

Since we cannot do TLB larger, we can do something else: make larger pages! Most hardware has 4K basic pages, and 2M/4M/1G
"large pages". Having larger pages to cover the same region also makes page tables themselves smaller, making the cost of page
table walk lower.

In Linux world, there are at least two distinct ways to get this in applications:

e hugetlbfs (https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt). Cut out the part of system memory, expose it as virtual
filesystem, and let applications mmap(2) from it. This is a peculiar interface that requires both OS configuration and
application changes to use. This also "all or nothing" kind of deal: the space allocated for (the persistent part of) hugetlbfs
cannot be used by regular processes.

e Transparent Huge Pages (THP) (https://www.kernel.org/doc/Documentation/vm/transhuge.txt). Let application allocate memory as
usual, but try to provide large-pages-backed storage transparently to the application. Ideally, no application changes are
needed, but we will see how applications can benefit from knowing THP is available. In practice, though, there are memory
overheads (because you will allocate an entire large page for something small), or time overheads (because sometimes THP
needs to defrag memory to allocate pages). The good part is that there is a middle-ground: madvise(2) lets application tell
Linux where to use THP.

Why the nomenclature uses "large" and "huge" interchangeably is beyond me. Anyway, OpenJDK supports both modes:

$ java -XX:+PrintFlagsFinal 2>&1 | grep Huge

bool UseHugeTLBFS = false {product} {default}

bool UseTransparentHugePages = false {product} {default}
$ java -XX:+PrintFlagsFinal 2>&1 | grep LargePage

bool UselLargePages = false {pd product} {default}

-XX:+UseHugeTLBFS mmaps Java heap into hugetlbfs, that should be prepared separately.

-XX:+UseTransparentHugePages just madvise -s that Java heap should use THP. This is convenient option, because we know
that Java heap is large, mostly contiguous, and probably benefits from large pages the most.

-XX:+UseLargePages is a generic shortcut that enables anything available. On Linug, it enables hugetlbfs, not THP. I guess that
is for historical reasons, because hugetlbfs came first.

Some applications do suffer (https://bugs.openjdk.java.net/browse/JDK-8024838) with large pages enabled. (It is sometimes funny to see
how people do manual memory management to avoid GCs, only to hit THP defrag causing latency spikes for them!) My gut
feeling is that THP regresses mostly short-lived applications where defrag costs are visible in comparison to short application
time.

https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://bugs.openjdk.java.net/browse/JDK-8024838

Experiment

Can we show what benefit large pages give us? Of course we can, let’s take a workload that any systems performance engineer
had run at least once by their mid-thirties. Allocate and randomly touch a byte[] array:

JAVA
public class ByteArrayTouch {

@Param(...)
int size;

byte[] mem;

@Setup

public void setup() {
mem = new byte[size];

+

@Benchmark
public byte test() {
return mem[ThreadLocalRandom.current().nextInt(size)];

¥

(full source here)

We know that depending on size, the performance would be dominated either by L1 cache misses, or L2 cache misses, or L3
cache misses, etc. What this picture usually omits is the TLB miss costs.

Before we run the test, we need to decide how much heap we will take. On my machine, L3 is about 8M, so 100M array would be
enough to get past it. That means, pessimistically allocating 1G heap with -Xmx1G -Xms1G would be enough. This also gives us a
guideline how much to allocate for hugetlbfs.

So, making sure these options are set:

SHELL
HugeTLBFS should allocate 1000*2M pages:

sudo sysctl -w vm.nr_hugepages=1000

THP to "madvise" only (some distros have an opinion about defaults):
echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag

I'like to do "madvise" for THP, because it lets me to "opt-in" for particular parts of memory we know would benefit.

Running on 17 4790K, Linux x86_64, JDK 8u101:

Benchmark (size) Mode Cnt Score Error Units

Baseline

ByteArrayTouch. test 1000 avgt 15 8.109 + 0.018 ns/op
ByteArrayTouch. test 10000 avgt 15 8.086 + 0.045 ns/op
ByteArrayTouch. test 1000000 avgt 15 9.831 = 0.139 ns/op
ByteArrayTouch.test 10000000 avgt 15 19.734 + 0.379 ns/op
ByteArrayTouch.test 100000000 avgt 15 32.538 + 0.662 ns/op

-XX:+UseTransparentHugePages

ByteArrayTouch. test 1000 avgt 15 8.104 £ 0.012 ns/op
ByteArrayTouch.test 10000 avgt 15 8.060 + 0.005 ns/op
ByteArrayTouch. test 1000000 avgt 15 9.193 + 0.086 ns/op // !
ByteArrayTouch.test 10000000 avgt 15 17.282 + 0.405 ns/op // !!
ByteArrayTouch.test 100000000 avgt 15 28.698 + 0.120 ns/op // !!!
-XX:+UseHugeTLBFS

ByteArrayTouch. test 1000 avgt 15 8.104 + 0.015 ns/op
ByteArrayTouch. test 10000 avgt 15 8.062 £ 0.011 ns/op
ByteArrayTouch. test 1000000 avgt 15 9.303 + 0.133 ns/op // !
ByteArrayTouch.test 10000000 avgt 15 17.357 + 0.217 ns/op // !!
ByteArrayTouch.test 100000000 avgt 15 28.697 + 0.291 ns/op // !!!

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/ByteArrayTouch.java

A few observations here:

1. On smaller sizes, both cache and TLB are fine, and there is no difference against baseline.

2. Onlarger sizes, cache misses start to dominate, this is why costs grow in every configuration.

3. Onlarger sizes, TLB misses come to picture, and enabling large pages helps a lot!

4. Both UseTHP and UseHTLBFS help the same, because they are providing the same service to application.

To verify the TLB miss hypothesis, we can see the hardware counters. JMH -prof perfnorm gives them normalized by
operation.

Benchmark (size) Mode Cnt Score Error Units

Baseline

ByteArrayTouch.test 100000000 avgt 15 33.575 + 2.161 ns/op
ByteArrayTouch.test:cycles 100000000 avgt 3 123.207 + 73.725 #/op
ByteArrayTouch.test:dTLB-load-misses 100000000 avgt 3 1.017 + 0.244 #/op // !
ByteArrayTouch.test:dTLB-1loads 100000000 avgt 3 17.388 £ 1.195 #/op

-XX:+UseTransparentHugePages

ByteArrayTouch. test 100000000 avgt 15 28.730 + 0.124 ns/op
ByteArrayTouch.test:cycles 100000000 avgt 3 105.249 £ 6.232 #/op
ByteArrayTouch.test:dTLB-load-misses 100000000 avgt 3 =103 #/0p
ByteArrayTouch.test:dTLB-1loads 100000000 avgt 3 17.488 + 1.278 #/op

There we go! One dTLB load miss per operation in baseline, and much less with THP enabled.

Of course, with THP defrag enabled, you will pay the upfront cost of defragmentation at allocation/access time. To shift these
costs to the JVM startup that will avoid surprising latency hiccups when application is running, you may instruct JVM to touch
every single page in Java heap with -XX:+AlwaysPreTouch during initialization. It is a good idea to enable pre-touch for larger
heaps anyway:.

And there comes the funny part: enabling -XX:+UseTransparentHugePages actually makes -XX:+AlwaysPreTouch faster,
because OS now handles larger pages: there are less of them to handle, and there are more wins in streaming (zeroing) writes by
OS. Freeing memory after process dies is also faster with THP, sometimes gruesomely so, until parallel freeing patch
(https://lwn.net/Articles/715501/) trickles down to distro kernels.

Case in point, using 4 TB (terabyte, with a T) heap:

SHELL
$ time java -Xms4T -Xmx4T -XX:-UseTransparentHugePages -XX:+AlwaysPreTouch

real 13m58.167s # About 5 GB/sec
user 43m37.519s
sys 1011m25.740s

$ time java -Xms4T -Xmx4T -XX:+UseTransparentHugePages -XX:+AlwaysPreTouch
real 2m14.758s # About 31 GB/sec

user 1m56.488s

sys 73m59.046s

Committing and freeing 4 TB sure takes a while!

Observations

Large pages are easy trick to boost application performance. Transparent Huge Pages in Linux kernel makes it more accessible.
Transparent Huge Pages support in JVM makes it easy to opt-in. It is always a good idea to try large pages, especially if your
application has lots of data and large heaps.

https://lwn.net/Articles/715501/

JVM Anatomy Quark #3: GC Design and Pauses

Do these play together at all?

Question

Garbage Collection is the enemy. But I must not fear. Fear is the mind-killer. Fear is the little-death that brings total obliteration...
wait, what was the question again? The actual question was about to discuss the claim that "Allocating 100M objects in array
list is enough to show how Java hiccups for seconds". Is that true?

Landscape

It is easy to scapegoat generic GC as performance hog, while the problem lies in the GC implementations that do not perform up
to your expectations on your workloads. In many cases, those workloads are themselves problematic, but in many cases
workloads are running with unsuitable GCs! Let’s see what is there in Open]JDK landscape GC-wise:

Young GC - Old GC

N\
A
\

<
<

Serial, Parallel:

Copy Mark Compact
CMS:
Still a pause i Sopy Concurrent Mark I Conc. Sweep Does not solve
.......... - ... fragmentation :(
................. Init Mark Finish Mark
G1:
Smaller, adjustable, Copy Concurrent Mark Compact Smaller, adjustable
but still a pause (.... = - but still a pause :(
................. Init Mark Finish Mark

Shenandoah (in development):

A (Y)_/" Concurrent Mark I Conc. Compact

does not need young?

Init Mark Finish Mark

Figure 1. Open]DK GC landscape. Yellow are stop-the-world phases, green are concurrent phases.

Notice how most collectors have pauses in their regular GC cycles.

Experiment

While rejecting the "100M Objects into ArrayList” test as unrealistic is fun, we can still run it and see how it performs. Quickly
hacking it together:

. X . JAVA
import java.util.*;

public class AL {
static List<Object> 1;
public static void main(String... args) {
1 = new ArraylList<>();
for (int ¢ = 0; c < 100_000_000; c++) {
1.add(new Object());
}

A little bit of cow wisdom about this:

SHELL
$ cowsay ...

/ This is a crappy GC benchmark, by the \
| way. I am a cow, and even I understand |

\ this. /
\ A A
\ (00)\
)\ I\/\
|[=---w |

Still, even a crappy benchmark tells you something about the system under test. You have to only be careful to understand what
it tells you. Turns out, the workload like above highlights the GC design choices of different collectors in OpenJDK.

Let’s run with latest JDK 9 + Shenandoah forest to get all the latest GC implementation improvements. For a change, do this on a
low-level 1.7 GHz i5 ultrabook with Linux x86_64. Since we are about to allocate 100M 16-byte objects, setting up the heap to
static 4 GB seems fine, and eliminates some degrees of freedom between collectors.

G1 (defaultin JDK9)

SHELL
$ time java -Xms4G -Xmx4G -Xlog:gc AL

[0.030s][info][gc] Using G1

[1.525s][info][gc] GC(0) Pause Young (G1 Evacuation Pause) 370M->367M(4096M) 991.610ms
[2.808s][info][gc] GC(1) Pause Young (G1 Evacuation Pause) 745M->747M(4096M) 928.510ms
[3.918s]1[info][gc] GC(2) Pause Young (G1 Evacuation Pause) 1105M->1107M(4096M) 764.967ms
[5.061s][info][gc] GC(3) Pause Young (G1 Evacuation Pause) 1553M->1555M(4096M) 601.680ms
[5.835s][info][gc] GC(4) Pause Young (G1 Evacuation Pause) 1733M->1735M(4096M) 465.216ms
[6.459s]1[info][gc] GC(5) Pause Initial Mark (G1 Humongous Allocation) 1894M->1897M(4096M) 398.453ms
[6.459s]1[info][gc] GC(6) Concurrent Cycle

[7.790s]1[info][gc] GC(7) Pause Young (G1 Evacuation Pause) 2477M->2478M(4096M) 472.079ms
[8.524s][info][gc] GC(8) Pause Young (G1 Evacuation Pause) 2656M->2659M(4096M) 434.435ms
[11.104s][info][gc] GC(6) Pause Remark 2761M->2761M(4096M) 1.020ms

[11.979s][info]l[gc] GC(6) Pause Cleanup 2761M->2215M(4096M) 2.446ms

[11.988s][info][gc] GC(6) Concurrent Cycle 5529.427ms

real Om12.016s
user 0m34.588s
sys 0m0.964s

What do we see with G1? Young pauses that are in in 500..1000 ms range. These pauses are likely to be less once we reach steady
state and heuristics figure out how much to collect to keep pause times on target. After a while, concurrent GC cycle starts, and
continues until almost to the end. (Notice how Young collections overlap with concurrent phases too). It should have been
followed by "mixed" collection pauses, but VM had exited before that. These non-steady-state pauses really contributed to the
long run times for this one-off job.

Also, notice how "user" time is larger than "real" (wallclock) time. This is because GC work is parallel, and so while the
application is running in a single thread, GCs are using all available parallelism to make the collections faster wallclock-wise.

Parallel

SHELL
$ time java -XX:+UseParallelOldGC -Xms4G -Xmx4G -Xlog:gc AL

[0.023s][info][gc] Using Parallel
[1.579s][info][gc] GC(0) Pause Young (Allocation Failure) 878M->714M(3925M) 1144.518ms
[3.619s]1[info][gc] GC(1) Pause Young (Allocation Failure) 1738M->1442M(3925M) 1739.009ms

real 0m3.882s
user O0m11.032s
sys 0m1.516s

With Parallel, we see similar Young pauses, which also probably resized the Eden/Survivors just enough to accept more
temporary allocations. Therefore, we have only two large pauses, and the workload finishes quickly. In steady state, this collector
would probably keep the same large pauses. "user" >> "real" as well, so some overhead is hiding in concurrent GC work here.

Concurrent Mark Sweep

SHELL
$ time java -XX:+UseConcMarkSweepGC -Xms4G -Xmx4G -Xlog:gc AL

[0.012s][info][gc] Using Concurrent Mark Sweep

[1.984s][info][gc] GC(0) Pause Young (Allocation Failure) 259M->231M(4062M) 1788.983ms
[2.938s][info][gc] GC(1) Pause Young (Allocation Failure) 497M->511M(4062M) 871.435ms
[3.970s]1[info][gc] GC(2) Pause Young (Allocation Failure) 777M->850M(4062M) 949.590ms
[4.779s]1[info][gc] GC(3) Pause Young (Allocation Failure) 1117M->1161M(4062M) 732.888ms
[6.604s][info][gc] GC(4) Pause Young (Allocation Failure) 1694M->1964M(4062M) 1662.255ms
[6.619s]1[info][gc] GC(5) Pause Initial Mark 1969M->1969M(4062M) 14.831ms
[6.619s]1[info][gc] GC(5) Concurrent Mark

[8.373s]1[info][gc] GC(6) Pause Young (Allocation Failure) 2230M->2365M(4062M) 1656.866ms
[10.397s][info]l[gc] GC(7) Pause Young (Allocation Failure) 3032M->3167M(4062M) 1761.868ms
[16.323s][info][gc] GC(5) Concurrent Mark 9704.075ms

[16.323s][info][gc] GC(5) Concurrent Preclean

[16.365s][info]l[gc] GC(5) Concurrent Preclean 41.998ms

[16.365s][info][gc] GC(5) Concurrent Abortable Preclean

[16.365s][info]l[gc] GC(5) Concurrent Abortable Preclean 0.022ms

[16.478s][info]l[gc] GC(5) Pause Remark 3390M->3390M(4062M) 113.598ms

[16.479s][info]l[gc] GC(5) Concurrent Sweep

[17.696s][info]l[gc] GC(5) Concurrent Sweep 1217.415ms

[17.696s][info][gc] GC(5) Concurrent Reset

[17.701s][info][gc] GC(5) Concurrent Reset 5.439ms

real O0m17.719s
user 0m45.692s
sys 0m0.588s

Contrary to popular belief, in CMS, "Concurrent” means the concurrent collections in old generation. The young collections are
still stopping the world, as we can see here. From the GC log standpoint, the phasing looks like G1: young pauses, concurrent
cycle. The difference is that "Concurrent Sweep" cleans up old without stopping the application, in contrast to G1 Mixed pauses.
Anyhow, the longer Young GC pauses without heuristics able to catch up with them yet defines the performance on this quick
job.

Shenandoah

SHELL
$ time java -XX:+UseShenandoahGC -Xms4G -Xmx4G -Xlog:gc AL

[0.026s][info][gc] Using Shenandoah

[0.808s][info][gc] GC(0) Pause Init Mark 0.839ms

[1.883s][info][gc] GC(0) Concurrent marking 2076M->3326M(4096M) 1074.924ms
[1.893s][info][gc] GC(0) Pause Final Mark 3326M->2784M(4096M) 10.240ms
[1.894s][info][gc] GC(0) Concurrent evacuation 2786M->2792M(4096M) 0.759ms
[1.894s][info][gc] GC(0) Concurrent reset bitmaps 0.153ms
[1.895s]1[info][gc] GC(1) Pause Init Mark 0.920ms

[1.998s][info][gc] Cancelling concurrent GC: Stopping VM

[2.000s][info][gc] GC(1) Concurrent marking 2794M->2982M(4096M) 104.697ms

real 0m2.021s
user 0m5.172s
sys 0m0.420s

In Shenandoah (https://wiki.openjdk.java.net/display/shenandoah/Main), there are no young collections. (At least today. There are some
ideas how to get quick partial collections without introducing generations — but they are unlikely to be stop-the-world). The
concurrent GC cycle starts and runs along with application, stopping it with two minor pauses to initiate and finish the
concurrent mark. Concurrent copying takes nothing, because everything is alive and not yet fragmented. The second GC cycle
terminates early due to VM shutdown. The absence of pauses like in other collectors explains why the workload can finish
quickly.

Epsilon
SHELL
$ time java -XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC -Xms4G -Xmx4G -Xlog:gc AL
[0.031s][info][gc] Initialized with 4096M non-resizable heap.
[0.031s][info][gc] Using Epsilon GC
[1.361s]1[info][gc] Total allocated: 2834042 KB.
[1.361s]1[info][gc] Average allocation rate: 2081990 KB/sec

real O0m1.415s
user 0m1.240s
sys 0m0.304s

https://wiki.openjdk.java.net/display/shenandoah/Main

Running with experimental "no-op" Epsilon GC (http://openjdk.java.net/jeps/318) can help to estimate GC overheads when no
collector is running at all. Here, we can fit exactly in 4 GB pre-sized heap, and application runs with no pauses whatsoever. It
would not survive anything more actively mutating the heap, though. Notice that "real" and "user"+"sys" times are almost equal,
which corroborates the theory there was a single application thread only.

Observations

Different GCs have different tradeoffs in their implementations. Brushing the GC off as "bad idea" is a stretch. Choose a collector
for your kind of workload, by understanding your workload, available GC implementations, and your performance
requirements. Even if you choose to target platforms without GCs, you would still need to know (and choose!) your native
memory allocators. When running experimental workloads, try to understand what they tell you, and learn from that. Peace.

http://openjdk.java.net/jeps/318

JVM Anatomy Quark #4: TLAB allocation

Do these play together at all?

Question

What is TLAB allocation? Pointer-bump allocation? Who is responsible for allocating objects anyway?

Theory

Most of the time we do new MyClass() , the runtime environment has to allocate storage for the instance in question. The
textbook GC (memory manager) interface for allocation is very simple:

ref Allocate(T type);
ref AllocateArray(T type, int size);

Of course, since memory managers are usually written in the language different from the language runtime is targeted by (e.g.
Java targets JVM, yet HotSpot JVM is written in C++), the interface gets murkier. For example, such a call from Java program
needs to transit into native VM code. Does it cost much? Probably. Does the memory manager have to cope with multiple threads
begging for memory? For sure.

So to optimize this, we may instead allow threads to allocate the entire blocks of memory for their needs, and only transit to VM
to get a new block. In Hotspot, these blocks are called Thread Local Allocation Buffers (TLABs), and there is a sophisticated
machinery built to support them. Notice that TLABs are thread-local in the temporal sense, meaning they act like the buffers to
accept current allocations. They still are parts of Java heap, the thread can still write the reference to a newly allocated object
into the field outside of TLAB, etc.

All known Open]DK GCs support TLAB allocation. This part of VM code is pretty well shared among them. All Hotspot compilers
support TLAB allocation, so you would usually see the generated code for object allocation like this:

ASM

0x00007f3e6bb617cc: mov 0x60(%r15),%rax ; TLAB "current"

0x00007f3e6bb617d0: mov %rax,%r10 ; tmp = current

0x00007f3e6bb617d3: add $0x10,%r10 ; tmp += 16 (object size)
0x00007f3e6bb617d7: cmp 0x70(%r15),%r10 ; tmp > tlab_size?

0x00007f3e6bb617db: jae 0x00007f3e6bb61807 ; TLAB is done, jump and request another one
0x00007f3e6bb617dd: mov %r10,0x60(%r15) ; current = tmp (TLAB is fine, alloc!)
0x00007f3e6bb617e1: prefetchnta 0xc0(%r10) ce

0x00007f3e6bb617€9: movg $0x1, (%rax) ; store header to (obj+0)
0x00007f3e6bb617f0: movl $0xf80001dd,0x8(%rax) ; store klass to (obj+8)

0x00007f3e6bb617f7: mov %r12d,0xc(%rax) ; zero out the rest of the object

The allocation path is inlined in the generated code, and as such does not require calling into GC to allocate the object. If we are
requesting to allocate the object that depletes the TLAB, or the objects is large enough to never fit into the TLAB, then we take a
"slow path", and either satisfy the allocation there, or come back with a fresh TLAB. Notice how the most frequent "normal" path
is just adding the object size to TLAB current cursor, and then moving on.

This is why this allocation mechanism is sometimes called "pointer bump allocation”. Pointer bump requires a contiguous chunk
of memory to allocate to, though — which brings back the need for heap compaction. Notice how CMS does free-list allocation in
"old" generation, thus enabling concurrent sweep, but it has compacting stop-the-world "young" collections, that benefit from
pointer bump allocation! A much lower quantity of objects that survived the young collection would pay the cost of free list
allocation.

For the sake of experiment, we can turn TLAB machinery off with -XX:-UseTLAB. Then, all allocations would take into the
native method, like this:

SHELL
- 17.12% 0.00% org.openjdk.All perf-31615.map

- 0x7faaa3b2d125
- 16.59% OptoRuntime: :new_instance_C
- 11.49% InstanceKlass::allocate_instance
2.33% BlahBlahBlahCollectedHeap::mem_allocate <---- entry point to GC
0.35% AllocTracer::send_allocation_outside_tlab_event

...but, as you would see below, it is usually a bad idea.

Experiment

As usual, let us try to construct an experiment to see TLAB allocation in action. Since the machinery is shared by all GC
implementations there, in makes sense to minimize the impact of other parts of runtime by using experimental Epsilon GC
(http://openjdk.java.net/jeps/8174901). Indeed, it implements allocation only, and thus provides a good research vessel for this work.

Quickly drafting a workload: allocating 50M objects (why not?), and running with JMH with SingleShot mode to get statistics and
profiling for free. You could do this with a standalone test too, but SingleShot is just too convenient here.

. . JAVA
@Warmup(iterations = 3)

@Measurement(iterations = 3)
@Fork(3)
@BenchmarkMode (Mode.SingleShotTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class AllocArray {
@Benchmark
public Object test() {
final int size = 50_000_000;
Object[] objects = new Object[size];
for (int ¢ = 0; c < size; c++) {
objects[c] = new Object();
+
return objects;

This test allocates 50M objects in a single thread. This is empirically selected to make 20 GB heap last for at least 6 iterations, as
we would see next. The experimental -XX:EpsilonTLABSize option is used to control the TLAB sizing exactly. Other OpenJDK
GCs share the adaptive TLAB sizing (https://blogs.oracle.com/daviddetlefs/entry/tlab_sizing an_annoying little) policy that selects the sizes
based on allocation pressure and other concerns. For our performance tests it is easier to nail the TLAB size.

Without further ado, these are the results:

SHELL

Benchmark Mode Cnt Score Error Units

Times, lower is better # TLAB size
AllocArray.test ss 9 548.462 + 6.989 ms/op # 1 KB
AllocArray.test Ss 9 268.037 £ 10.966 ms/op # 4 KB
AllocArray.test Ss 9 230.726 £+ 4.119 ms/op # 16 KB
AllocArray.test ss 9 223.075 + 2.267 ms/op # 256 KB
AllocArray.test Ss 9 225.404 + 17.080 ms/op # 1024 KB
Allocation rates, higher is better

AllocArray.test:-gc.alloc.rate ss 9 1816.094 + 13.681 MB/sec # 1 KB
AllocArray.test:-gc.alloc.rate ss 9 2481.909 + 35.566 MB/sec # 4 KB
AllocArray.test:-gc.alloc.rate ss 9 2608.336 + 14.693 MB/sec # 16 KB
AllocArray.test:-gc.alloc.rate ss 9 2635.857 + 8.229 MB/sec # 256 KB
AllocArray.test:-gc.alloc.rate ss 9 2627.845 + 60.514 MB/sec # 1024 KB

Notice how we are able to pull off 2.5 GB/sec allocation rate in a single thread. With 16 byte objects, this means 160 million
objects per second. In multi-threaded workloads, the allocation rates may reach tens of gigabytes per second. Of course, once
TLAB size gets smaller, both the allocation costs go up, and allocation rate goes down. Unfortunately, we cannot make TLABs
lower than 1 KB, because Hotspot mechanics needs some space wasted there, but we can turn off TLAB machinery completely, to
see the performance impact:

SHELL
Benchmark Mode Cnt Score Error Units

-XX:-UseTLAB
AllocArray.test ss 9 2784.988
AllocArray.test:-gc.alloc.rate ss 9 580.533

18.925 ms/op
3.342 MB/sec

Whoa, the allocation rate goes down at least 5%, and time to execute goes up 10x! And this is not even starting to touch what a
collector has to do when multiple threads are asking for memory (probably contended atomics), or if it needs to look up where to
allocate the memory from (try to allocate fast from free lists!). For Epsilon, the allocation path in GC is a single compare-and-set

http://openjdk.java.net/jeps/8174901
https://blogs.oracle.com/daviddetlefs/entry/tlab_sizing_an_annoying_little

— because it issues the memory blocks by pointer-bumps itself. If you add one additional thread — totaling just two running
threads — without TLABs, everything goes downhill:

SHELL
Benchmark Mode Cnt Score Error Units

TLAB = 4M (default for Epsilon)
AllocArray.test ss 9 407.729
AllocArray.test:-gc.alloc.rate Ss 9 4190.670

7.672 ms/op
45.909 MB/sec

+ H+

-XX:-UseTLAB
AllocArray.test Ss 9 8490.585
AllocArray.test:-gc.alloc.rate ss 9 422.960

410.518 ms/op
19.320 MB/sec

This is 20x performance hit now. Project the slowness you would experience with larger thread counts!

Observations

TLABs are the workhorses of allocation machinery: they unload the concurrency bottlenecks of the allocators, provide a cheap
allocation path, and improve performance all around. It is funny to consider that having TLABs is the way to experience more
frequent GC pauses, just because the allocation is so damn cheap! In reverse, having no fast allocation path in any memory
manager implementation for sure hides the memory reclamation performance problems. When comparing the memory
managers, do understand both parts of the story, and how they relate to each other.

JVM Anatomy Quark #5: TLABs and Heap Parsability

What the heck are those int[] arrays in my heap dumps?!

Question

Have you ever encountered the large int[] arrays that cannot be accounted for? Those that are seemingly allocated nowhere,
but still consuming heap? Those that have some garbage-looking data in them?

Theory

In GC theory, there is an important property that good collectors try to maintain, heap parsability, that is, shaping the heap in
such a way it could be parsed for objects, fields, etc. without complicated metadata supporting it. In Open]DK, for example, many
introspection tasks walk the heap with a simple loop like this:

HeapWord* cur = heap_start;
while (cur < heap_used) {
object o = (object)cur;
do_object(o);
cur = cur + o->size();

b

That’s it! If heap is parsable, then we can assume there is a contiguous stream of objects from the start to the allocated end. This
is not, strictly speaking, a required property, but it makes GC implementation, testing and debugging much easier.

Enter Thread Local Allocation Buffer (TLAB) machinery: now, each thread has its own TLAB it can currently allocate to. From the
GC perspective, this means the entire TLAB is claimed. GC cannot easily know what threads are up to there: are they in the
middle of bumping the TLAB cursor? What is the value for TLAB cursor anyway? It is possible that a thread just keeps it
somewhere in the register (in OpenJDK, it is not) and never shows it to external observers. So, there is a problem: outsiders do
not know what exactly happens in TLABs.

We might want to stop the threads to avoid their TLAB mutation, and then traverse the heap accurately, checking if what we are
walking right now is the part of some TLAB. But there is a more convenient trick: why don’t we make heap parsable by inserting
filler objects? That is, if we have:

TLAB start TLAB used TLAB end

...we can stop the threads, and ask them to allocate a dummy object in the rest of the TLAB to make their part of heap parsable:

A A A

TLAB start TLAB used TLAB end

What is a good candidate for a dummy object? Of course, something that has variable length. Why not int[] array? Note that
"putting" the object like this only amounts to putting out the array header, and letting heap mechanics to work out the rest,
jumping over its contents. Once thread resumes allocating in TLAB, it can just overwrite whatever filler we allocated, like
nothing happened.

The same thing, by the way, simplifies sweeping the heap. If we remove (sweep out) the object, it is convenient to place a filler in
its place to keep heap walking routines happy.

Experiment

Can we see it in action? Of course we can. What we want is to start lots of threads that would claim some TLABs of their own,
and one loner thread what will exhaust the Java heap, crashing with OutOfMemoryException, which we will use as the trigger
for a heap dump.

Workload like this is fine:

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/4-tlab-allocation/

. . . JAVA
import java.util.¥*;

import java.util.concurrent.*;

public class Fillers {

public static void main(String... args) throws Exception {
final int TRAKTORISTOV = 300;
CountDownLatch cdl = new CountDownLatch(TRAKTORISTOV);
for (int t = 0 ; t < TRAKTORISTOV; t++) {

new Thread(() -> allocateAndwait(cdl)).start();

+
cdl.await();
List<Object> 1 = new ArraylList<>();
new Thread(() -> allocateAndDie(l)).start();

¥

public static void allocateAndWait(CountDownLatch cdl) {
Object o = new Object(); // Request a TLAB
cdl.countDown();
while (true) {
try {
Thread.sleep(1000);
} catch (Exception e) {
break;
b
+
System.out.println(o); // Use the object
b

public static void allocateAndDie(Collection<Object> c) {
while (true) {
c.add(new Object());
+
b
t

Now, in order to get the predictable TLAB sizes, we can again use Epsilon GC (http://openjdk.java.net/jeps/8174901). Running with -
Xmx1G -Xms1G -XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC -XX:+HeapDumpOnOutOfMemoryError quickly fails
and produces the heap dump for us.

Opening this heap dump in Eclipse Memory Analyzer (MAT) (http://www.eclipse.org/mat/) —I like that tool a lot —we can see this
class histogram:

Class Name | Objects | Shallow Heap |

| | |
int[] | 1,099 | 814,643,272 |
java.lang.Object | 9,181,912 | 146,910,592 |
java.lang.Object[] | 1,521 | 110,855,376 |
bytel] | 6,928 | 348,896 |
java.lang.String | 5,840 | 140,160 |
java.util.HashMap$Node | 1,696 | 54,272 |
java.util.concurrent.ConcurrentHashMap$Node | 1,331 | 42,592 |
java.util.HashMap$Node[] | 413 | 42,032 |
char[] | 50 | 37,432 |

See how int[] is the dominating heap consumer! These are our filler objects. Granted, this experiment has a few caveats.

First, we configured Epsilon to have static TLAB sizes. A high-performance collector would instead make the adaptive TLAB
sizing decisions, which would minimize the heap slack when a thread had allocated a few objects, but still sits on troves of TLAB
memory. This is one of the reasons why you don’t want to issue large TLABs without thinking twice. Still, it is possible to observe
filler objects when an actively allocating thread has the large TLAB issued to it, and it is only half way there in filling it up with
real data.

Second, we have configured MAT to show us unreachable objects. These filler objects are, by definition, unreachable. Their
presence in the heap dumps is just a side effect of heap dumping using heap parsability property to walk the heap. These objects
do not really exist, and a good heap dump analyzer tool will happily filter them out for you — this might be one of the reasons
why a crashing 1G heap dump has only, say, 900 MB worth of objects in it.

http://openjdk.java.net/jeps/8174901
http://www.eclipse.org/mat/

Observations

Having TLABs is fun. Having heap parsability is fun too. Combining both is even funnier, and sometimes leaks out internal
trickery. If you see a surprising behavior from any runtime, you might be looking at some clever trick!

JVM Anatomy Quark #6: New Object Stages

What the heck are those int[] arrays in my heap dumps?!

Question

So I've heard allocation is not initialization. But Java has constructors! Are they allocating? Or initializing?

Theory

If you open the GC Handbook (http://gchandbook.org)), it would tell you that creating a new object usually entails three phases:

1. Allocation. That is, figuring out what part of process space to get for instance data.

2. System initialization. That is, the initialization required by the language. In C, no initialization is required for new -ly
allocated objects. In Java, system initialization is required for all objects: it is expected to see only default values for a newly
created object, it is expected to see all headers intact, etc.

3. Secondary (user) initialization. That is, running whatever instance initializers and constructors associated with that object
type.

We have covered (1) in previous note, "TLAB Allocation". It is time to see what initialization is doing. If you are familiar with Java
bytecode, then you will know that "new" code path takes several bytecode instructions. For example, this:

JAVA
public Object t() {

return new Object();
t

...compiles into:

JAVA
public java.lang.Object t();

descriptor: ()Ljava/lang/Object;
flags: (0x0001) ACC_PUBLIC

Code:
stack=2, locals=1, args_size=1
0: new #4 // class java/lang/Object
3: dup
4: invokespecial #1 // Method java/lang/Object."<init>":()V
7: areturn

It feels like new is doing allocation and system initialization, while invoking the constructor (<init>) does user init. But, smart
runtimes can coalesce initialization when they know nobody will call the bluff — for example, by observing the object before the
constructor finished. Can we show if this initialization subsuming works for Hotspot?

Experiment

Sure we can. To do this, we just want to take a test that initialized two variants of single- int -field class:

http://gchandbook.org/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/4-tlab-allocation/

JAVA
import org.openjdk.jmh.annotations.*;

import java.util.concurrent.TimeUnit;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(value = 3)

@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class UserInit {

@Benchmark

public Object init() {
return new Init(42);

}

@Benchmark

public Object initLeaky() {
return new InitlLeaky(42);

¥

static class Init {
private int x;
public Init(int x) {
this.x = x;
+
}

static class InitlLeaky {
private int x;
public InitLeaky(int x) {
doSomething();
this.x = x;

j

@CompilerControl(CompilerControl.Mode.DONT_INLINE)
void doSomething() {

// intentionally left blank
+

This test is specially crafted to forbid inlining of empty doSomething() , forcing optimizers to assume that something accesses x
downstream. In other words, it would effectively leak the object to some external code —because we cannot say if code in
doSomething() actually leaks it.

It is better to run with -XX:+UseParallelGC -XX:-TieredCompilation -XX:-UseBiasedLocking to make generated code more
understandable — this is an educational exercise anyway. JMH’s -prof perfasm is perfect to dump the generated code for these
tests.

This isthe Init case:

ASM

B allocation ----------
0x00007efdc466d4cc: mov 0x60(%r15),%rax ; TLAB allocation below
0x00007efdc466d4d0: mov %rax,%r10
0x00007efdc466d4d3: add $0x10,%r10
0x00007efdc466d4d7: cmp 0x70(%r15),%r10
0x00007efdc466d4db: jae 0x00007efdc466d50a
0x00007efdc466d4dd: mov %r10,0x60(%r15)
0x00007efdc466d4el: prefetchnta 0xc0(%r10)

HEEE /allocation ---------

§ oocssoo system init ---------
0x00007efdc466d4e9: movg $0x1, (%rax) ; put mark word header
0x00007efdc466d4f0: movl $0xf8021bc4,0x8(%rax) ; put class word header

P system/user init

0x00007efdc466d4f7: movl $0x2a,0xc(%rax) ;X = 42,

You can see TLAB allocation, initialization of object metadata, and then coalesced system+user initialization of the field. This
changes quite a bit for InitLeaky case:

0x00007fc69571bf4c:
0x00007fc69571bf50:
0x00007fc69571bf53:
0x00007fc69571bf57:
0x00007fc69571bf5b:
0x00007fc69571bf5d:
0x00007fc69571bf61:

0x00007fc69571bf69:
0x00007fc69571bf70:
0x00007fc69571bf77:

0x00007fc69571bf7b:
0x00007fc69571bf7e:
0x00007fc69571bf81:
0x00007fc69571bf83:
0x00007fc69571bf88:

Here, since optimizers cannot figure if the value of x

mov 0x60(%r15),%rax
mov %rax,%r10

add $0x10,%r10

cmp 0x70(%r15),%r10
jae 0x00007fc69571bf9e
mov %r10,0x60(%r15)
prefetchnta 0xc0(%r10)

movq $0x1, (%rax)
mov1l $0xf8021bc4,0x8(%rax)
mov %r12d,0xc(%rax)

mov %rax,%rbp

mov %rbp,%rsi

xchg %ax,%ax

callg 0x00007fc68e269be0
mov1l $0x2a,0xc(%rbp)

initialization first, and only then finish up user init.

Observations

ASM

e /allocation ---------
e system init ---------
; put mark word header
; put class word header
; X = 0 (%r12 happens to hold 0)
HECE T /system init --------
e user init ----------

; call doSomething()
;X = 42
;e /user init ------

is needed, they have to assume the worst, and perform system

While textbook definition is sound, and bytecode reflects the same definition, the optimizers may do magic undercover to

optimize performance, as long as it would not yield surprising behaviors. From compiler perspective, this is a trivial
optimization, but from the conceptual point of view it operates over the theoretical "staging" boundaries.

JVM Anatomy Quark #7: Initialization Costs

What time is it? Payback time.

Question

What is so expensive about creating new objects? What defines the object instantiation performance?

Theory

If you look closely at object instantiation paths on larger objects, you will inevitably wonder how the different parts scale, and
what is the actual bottleneck in real world cases. We have seen that TLAB allocation seems very efficient, and that system
initialization can be coalesced with user initialization. But in the end, we still have to do writes to memory — can we tell how
much it costs?

Experiment

One primitive that can tell us the initialization part of story is plain old Java array. It needs to be initialized too, and its length is
variable, which lets us see what is going on at different sizes. With that in mind, let us construct this benchmark:

JAVA
import org.openjdk.jmh.annotations.*;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(value = 3)
@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Benchmark)
public class UA {

@Param({"1", "10", "100", "1000", "10000", "100000"})

int size;

@Benchmark
public byte[] java() {
return new byte[size];

}

It makes sense to run with the latest JDK 9 EA (the follow up test below requires it), with -XX:+UseParallel01dGC to minimize
GC overhead, and -Xmx20g -Xms20g -Xmn18g to keep most of the heap for these new allocations. Without further delay, this is
what you will get on a good development desktop (like mine i7-4790K, 4.0 GHz, Linux x86_64), when all 8 hardware threads are
busy:

SHELL
Benchmark (size) Mode Cnt Score Error Units

Time to allocate

UA.java 1 avgt 15 20.307 =+ 4.532 ns/op
UA.java 10 avgt 15 26.657 + 6.072 ns/op
UA.java 100 avgt 15 106.632 * 34.742 ns/op
UA.java 1000 avgt 15 681.176 + 124.980 ns/op
UA. java 10000 avgt 15 4576.433 + 909.956 ns/op
UA.java 100000 avgt 15 44881.095 + 13765.440 ns/op

Allocation rate

UA.java:-gc.alloc.rate 1 avgt 15 6228.153 + 1059.385 MB/sec
UA.java:-gc.alloc.rate 10 avgt 15 6335.809 + 986.395 MB/sec
UA.java:-gc.alloc.rate 100 avgt 15 6126.333 + 1354.964 MB/sec
UA.java:-gc.alloc.rate 1000 avgt 15 7772.263 + 1263.453 MB/sec
UA.java:-gc.alloc.rate 10000 avgt 15 11518.422 + 2155.516 MB/sec
UA.java:-gc.alloc.rate 100000 avgt 15 12039.594 + 2724.242 MB/sec

One can see that the allocation takes around 20 ns (single-threaded is much lower, but this average is skewed by hyper-threads),
which goes gradually up to 40 us for 100K array. If you look at the allocation rate, then you will see it saturates at around 12
GB/sec. These experiments form the basis for other performance tests, by the way: it is important to understand the order of
memory bandwidth / allocation rate you can pull off on a particular machine.

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/4-tlab-allocation/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/6-new-object-stages/

Can we see what code dominates the execution time? Of course we can, again, with JMH’s -prof perfasm.For -p
size=100000, it will print out the hottest code like this:

ASM

0x00007f1f094f650b: movq $0x1, (%rdx) ; store mark word
0.00% 0x00007f1f094f6512: prefetchnta 0xc0(%r9)
0.64% 0x00007f1f094f651a: movl $0xf80000f5,0x8(%rdx) ; store klass word
0.02% 0x00007f1f094f6521: mov %r11d,0xc(%rdx) ; store array length
0x00007f1f094f6525: prefetchnta 0x100(%r9)
0.05% 0x00007f1f094f652d: prefetchnta 0x140(%r9)
0.07% 0x00007f1f094f6535: prefetchnta 0x180(%r9)
0.09% 0x00007f1f094f653d: shr $0x3,%rcx
0.00% 0x00007f1f094f6541: add $OxFffffffffffffffe,%rcx
0x00007f1f094f6545: xor %rax,%rax
0x00007f1f094f6548: cmp $0x8,%rcx
r 0x00007f1f094f654c: jg 0x00007f1f094f655e ; large enough? jump
| 0x00007f1f094f654e: dec %I cx
| 0x00007f1f094f6551: js 0x00007f1f094f6565 ; zero length? jump
||~ 0x00007f1f094f6553: mov %rax,(%rdi,%rcx,8) ; small loop init
||| 0x00007f1f094f6557: dec %rcx
||t 0x00007f1f094f655a: jge 0x00007f1f094f6553
|| 0x00007f1f094f655c: jmp 0x00007f1f094f6565
«| | 0x00007f1f094f655e: shl $0x3,%rcx
89.12% | | 0x00007f1f094f6562: rep rex.W stos %al,%es:(%rdi) ; large loop init
0.20% ~ » 0x00007f1f094f6565: mov %r8, (%rsp)

You may find this code shape familiar from "TLAB Allocation" and "New Object Stages" issues in the series. What is interesting
here, is that we have to initialize much larger chunk of array data. For this reason, we see the inlined rep stos sequence on
x86 — which repeatedly stores the given number of given byte — and seems most effective on recent x86-s. One can spy with a
little eye that there is also an initializing loop for small arrays (smaller or equal of 8 elements) — rep stos has upfront startup
costs, so smaller loop is beneficial there.

This example shows that for large objects/arrays initialization costs would dominate the performance. If objects/arrays are small,
then writes of metadata (headers, array lengths) would dominate. Small array case would not be significantly different from
small object case.

Can we guesstimate what would the performance be, if we somehow avoid initialization? The compilers are routinely coalesce
system and user initialization, but can we get no initialization at all? Granted, it would serve no practical purpose to have
uninitialized object, because we will still fill it with user data later — but synthetic tests are fun, am I right?

Turns out, there is an Unsafe method that allocates uninitialized arrays, so we may use it to see the benefits. Unsafe isnot
Java, it does not play by Java rules, and it sometimes even defies the JVM rules. It is not the API for the public use, and it is there
for internal JDK use and JDK-VM interoperability. You can’t have it, it is not guaranteed to work for you, and it can go away, crash
and burn without telling you.

Still, we can use it in synthetics, like this:

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/4-tlab-allocation/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/6-new-object-stages/

import jdk.internal.misc.Unsafe;
import org.openjdk.jmh.annotations.*;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(value = 3)
@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Benchmark)
public class UA {

static Unsafe U;

static {

try {
Field field = Unsafe.class.getDeclaredField("theUnsafe");
field.setAccessible(true);
U = (Unsafe) field.get(null);

} catch (Exception e) {
throw new IllegalStateException(e);

}

@Param({"1", "10", "100", "1000", "10000", "100000"})
int size;

@Benchmark
public byte[] unsafe() {

return (byte[]) U.allocateUninitializedArray(byte.class, size);

¥
}
Why don’t we run it? Okay:

Benchmark (size) Mode Cnt Score Error
UA.unsafe 1 avgt 15 19.766 % 4.002
UA.unsafe 10 avgt 15 27.486 * 7.005
UA.unsafe 100 avgt 15 80.040 =+ 15.754
UA.unsafe 1000 avgt 15 156.041 + 0.552
UA.unsafe 10000 avgt 15 162.384 + 1.448
UA.unsafe 100000 avgt 15 309.769 =+ 2.819
UA.unsafe:-gc.alloc.rate 1 avgt 15 6359.987 + 928.472
UA.unsafe:-gc.alloc.rate 10 avgt 15 6193.103 + 1160.353
UA.unsafe:-gc.alloc.rate 100 avgt 15 7855.147 + 1313.314
UA.unsafe:-gc.alloc.rate 1000 avgt 15 33171.384 + 153.645
UA.unsafe:-gc.alloc.rate 10000 avgt 15 315740.299 + 3678.459
UA.unsafe:-gc.alloc.rate 100000 avgt 15 1650860.763 + 14498.920

Holy crap! 100K arrays are allocated with 1.6 terabytes per second rate. Can we see where we spend time now?

0x00007f65fd722c74: prefetchnta 0xcO(%r11)

66.06% 0x00007f65fd722c7c: movg $0x1, (%rax) ; store mark word
0.40% 0x00007f65fd722c83: prefetchnta 0x100(%r11)

4.43% 0x00007f65fd722c8b: movl $0xf80000f5,0x8(%rax) ; store class word
0.01% 0x00007f65fd722c92: mov %edx, 0xc(%rax) ; store array length

0x00007f65fd722c95: prefetchnta 0x140(%r11)
.18% 0x00007f65fd722c9d: prefetchnta 0x180(%r11)
4.99% 0x00007f65fd722ca5: mov %r8,0x40(%rsp)
0x00007f65fd722caa: mov %rax, %rdx

(9a]

Units
ns/op
ns/op
ns/op
ns/op
ns/op
ns/op

MB/sec
MB/sec
MB/sec
MB/sec
MB/sec
MB/sec

JAVA

SHELL

ASM

Oh yeah, touching the memory to push the metadata out. The cycles accounting is skewed towards the prefetches, because they

are now paying the most of the cost for pre-accessing memory for upcoming writes.

One might wonder what toll that exerts on GC, and the answer is: not that much! The objects are almost all dead, and so any

mark-(copy | sweep | compact) GC would breeze through the workload like this. When objects start surviving at TB/sec rate, the
picture gets interesting. Some GC guys I know call these things "impossible workloads" — because they both impossible in reality,
and impossible to deal with. Try to drink from a firehose to learn this in practice.

Anyhow, we can see that with pure allocations, GCs are surviving fine. With the same workload, we can see what are the
apparent application pauses, by using JMH’s -prof pauses profiler. It runs a high-priority thread and records the perceived

pauses:
SHELL
Benchmark (size) Mode Cnt Score Error Units
UA.unsafe 100000 avgt 5 315.732 + 5.133 ns/op
UA.unsafe: -pauses 100000 avgt 84 537.018 ms
UA.unsafe: -pauses.avg 100000 avgt 6.393 ms
UA.unsafe: -pauses.count 100000 avgt 84.000 #
UA.unsafe: -pauses.p0.00 100000 avgt 2.560 ms
UA.unsafe: -pauses.p0.50 100000 avgt 6.148 ms
UA.unsafe: -pauses.p0.90 100000 avgt 9.642 ms
UA.unsafe: -pauses.p0.95 100000 avgt 9.802 ms
UA.unsafe: -pauses.p0.99 100000 avgt 14.418 ms
UA.unsafe: -pauses.p0.999 100000 avgt 14.418 ms
UA.unsafe: -pauses.p0.9999 100000 avgt 14.418 ms
UA.unsafe: -pauses.p1.00 100000 avgt 14.418 ms

So, it had detected around 84 pauses, the longest is 14 ms, while the average is about 6 ms. Profilers like these are inherently
imprecise, because they contend on CPUs with workload threads, they get into the mercy of OS scheduler, etc.

In many cases, it is better to enable the JVM to tell when it stops the application threads. This can be done with JMH’s -prof

safepoints profiler, which records the "safe point", "stop the world" events when all application threads are stopped, and VM
does its work. GC pauses are naturally the subset of safepoint events.

SHELL

Benchmark (size) Mode Cnt Score Error Units
UA.unsafe 100000 avgt 5 328.247 + 34.450 ns/op
UA.unsafe: -safepoints.interval 100000 avgt 5043.000 ms
UA.unsafe: -safepoints.pause 100000 avgt 639 617.796 ms
UA.unsafe: -safepoints.pause.avg 100000 avgt 0.967 ms
UA.unsafe: -safepoints.pause.count 100000 avgt 639.000 #
UA.unsafe: -safepoints.pause.p0.00 100000 avgt 0.433 ms
UA.unsafe: -safepoints.pause.p0.50 100000 avgt 0.627 ms
UA.unsafe: -safepoints.pause.p0.90 100000 avgt 2.150 ms
UA.unsafe: -safepoints.pause.p0.95 100000 avgt 2.241 ms
UA.unsafe: -safepoints.pause.p0.99 100000 avgt 2.979 ms
UA.unsafe: -safepoints.pause.p0.999 100000 avgt 12.599 ms
UA.unsafe: -safepoints.pause.p0.9999 100000 avgt 12.599 ms
UA.unsafe: -safepoints.pause.p1.00 100000 avgt 12.599 ms

See, this profiler records 639 safepoints, with average time of less than 1 ms, and the largest time of 12 ms. Not bad, taking into
account 1.6 TB/sec allocation rate!

Observations

The initialization costs are the significant part of object/array instantiation. With TLAB allocation, the object/array creation speed
is largely dominated by either metadata writes (for smaller things), or the content initialization (for larger things). The allocation
rate alone is not always a good predictor of performance, as you can manage huge allocation rates if you runtime pulls weird
tricks on you.

JVM Anatomy Quark #8: Local Variable Reachability

Question

The references stored in local variables are collected when they go out of scope. Right?

Theory

This has deep roots in C/C++ experience of many programmers, because it is said in the scripture:

« 1. Local objects explicitly declared auto or register or not explicitly declared static or extern have

automatic storage duration. The storage for these objects lasts until the block in which they are created
exits.

2. [Note: these objects are initialized and destroyed as described in 6.7.]

3. If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused,
except that a class object or its copy may be eliminated as specified in 12.8.

— C++98 Standard
3.7.2 "Automatic storage duration”

This is a very useful language property, because it allows to bind the object lifetime to the syntactic code block. Which allows
doing, for example, this:

C++
void method() {

...something. ..

{
MutexLocker ml(mutex);
...something under the lock...
} // ~MutexLocker unlocks

...something else...
}

Coming from a C++ land, you would naturally expect the same property to hold in Java. There are no destructors, but there are
ways to detect if object is deemed unreachable, and act accordingly, e.g. via soft/weak/phantom references or finalizers. However,
the syntactic code blocks in Java do not act that way. See for example:

¢« "Optimizing transformations of a program can be designed that reduce the number of objects that are

reachable to be less than those which would naively be considered reachable. For example, a Java compiler
or code generator may choose to set a variable or parameter that will no longer be used to null to cause
the storage for such an object to be potentially reclaimable sooner."”

— Java Language Specification 8
12.6.1 "Implementing Finalization"

Does this really matter?

Experiment

This difference is fairly easy to demonstrate with the experiment. Take this class as example:

JAVA
public class LocalFinalize {

private static volatile boolean flag;

public static void pass() {
MyHook h1 = new MyHook();
MyHook h2 = new MyHook();

while (flag) {
// spin
}

h1.log();
}

public static class MyHook {
public MyHook() {
System.out.println("Created " + this);
}

public void log() {
System.out.println("Alive " + this);
}

@Override

protected void finalize() throws Throwable {
System.out.println("Finalized " + this);

}

Naively, one could presume that the lifetime of h2 extends to the end of the pass method. And since there is a waiting loop in
the middle that might not terminate with flag setto true, the object would never be considered for finalization.

The caveat is that we want the method to be compiled to see the interesting behavior. To force this, we can do two passes: first
pass will enter the method, spin for a while, and then exit. This will compile the method fine, because the loop body would be
executed many times, and that will trigger compilation. Then we can enter the second time, but never leave the loop again.

Something like this will do:

JAVA
public static void arm() {

new Thread(() -> {
try {
Thread.sleep(5000);
flag = false;
} catch (Throwable t) {}
}).start();
t

public static void main(String... args) throws InterruptedException {
System.out.println("Pass 1");
arm();
flag = true;
pass();

System.out.println("Wait for pass 1 finalization");
Thread.sleep(10000);

System.out.println("Pass 2");
flag = true;
pass();

We would also like a background thread forcing GC repeatedly, to cause finalization. Okay, the setup is done (full source here),
let’s run:

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/LocalFinalize.java

$ java -version

java version "1.8.0_101"

Java(TM) SE Runtime Environment (build 1.8.0_101-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

$ java LocalFinalize

Pass 1

Created LocalFinalize$MyHook@816f27d # h1 created
Created LocalFinalize$MyHook@87aac27 # h2 created
Alive LocalFinalize$MyHook@816f27d # h1.log called

Wait for pass 1 finalization
Finalized LocalFinalize$MyHook@87aac27 # h1 finalized
Finalized LocalFinalize$MyHook@816f27d # h2 finalized

Pass 2

Created LocalFinalize$MyHook@3e3abc88 # h1 created
Created LocalFinalize$MyHook@6ce253f1 # h2 created
Finalized LocalFinalize$MyHook@6ce253f1 # h2 finalized (!)

Oops. That happened because the optimizing compiler knew the last use of h2 was right after the allocation. Therefore, when
communicating what live variables are present —later during the loop execution — to the garbage collector, it does not consider
h2 live anymore. Therefore, garbage collector treats that MyHook instance as dead and runs its finalization. Since the h1 use is
later after the loop, it is considered reachable, and finalization is silent.

This is actually a great feature, because it lets GC can reclaim huge buffers allocated locally without requiring to exit the method,
e.g.:

. . JAVA
void processAndWait() {

byte[] buf = new byte[1024 * 1024];
writeToBuf(buf);

processBuf(buf); // last use!
waitForTheDeathOfUniverse(); // oops

Going Deeper

In fact, you can see the technicalities of this in various disassemblies. First, the bytecode disassembly does not even mention the
local variable data at all, and the slot 1 where the h2 instance is stored is left alone until the end of the method:

$ javap -c -v -p LocalFinalize.class

public static void pass();
descriptor: ()V
flags: ACC_PUBLIC, ACC_STATIC

Code:
stack=2, locals=2, args_size=0

0: new #17 // class LocalFinalize$MyHook
3: dup
4: invokespecial #18 // Method LocalFinalize$MyHook."<init>":()V
7: astore_0
8: new #17 // class LocalFinalize$MyHook
11: dup
12: invokespecial #18 // Method LocalFinalize$MyHook."<init>":()V
15: astore_1
16: getstatic #10 // Field flag:Z
19: ifeq 25
22: goto 16
25: aload_0
26: invokevirtual #19 // Method LocalFinalize$MyHook.log: ()V
29: return

Compiling with debug data (javac -g) yields Local Variable Table (LVT), where the lifetime of local variable "seems" to extend
by the end of the method:

public static void pass();
descriptor: ()V
flags: ACC_PUBLIC, ACC_STATIC

Name
h1

1/
//
//
//

//

//

Signature

LLocalFinalize$MyHook; // 8 + 22

Code:
stack=2, locals=2, args_size=0
0: new #17
3: dup
4: invokespecial #18
7: astore_0
8: new #17
11: dup
12: invokespecial #18
15: astore_1
16: getstatic #10
19: ifeq 25
22: goto 16
25: aload_0
26: invokevirtual #19
29: return
LocalVariableTable:
Start Length Slot
8 22 0
16 14 1

h2

class LocalFinalize$MyHook
Method LocalFinalize$MyHook."<init>":()V
class LocalFinalize$MyHook
Method LocalFinalize$MyHook."<init>":()V

Field flag:Z

Method LocalFinalize$MyHook.log: ()V

30

LLocalFinalize$MyHook; // 16 + 14 = 30

This might confuse people into believing the reachability is actually extended to the end of the method, because "scope" is
thought to be defined by LVT. But it is not, because optimizers could actually figure out that local is not used further, and
optimize accordingly. In our current test, this happens (in pseudocode):

public static void pass() {

MyHook
MyHook

h1 = new MyHook();
h2 = new MyHook();

while (flag) {

//

//

//

//

//
¥

spin
<gc safe point her

e>

Here, compiled code knows what references are present in machine
registers and on stack. By then, the "h2" is already past its last use,
and this map has no evidence of "h2". Therefore, GC treats it as dead.

h1.log();

This is somewhat visible in -XX:+PrintAssembly output:

datal16 datal6 xchg %ax,%ax

LOOP:

#

ETS

test %eax,0x15ae2bca(%rip) #
movzbl 0x70(%r10),%r8d
test %r8d,%r8d

jne LOOP

ImmutableOopMap{r10=00p rbp=00p} basically says that %r10 and %rbp hold the "ordinary object pointers". %r10 holds

loop alignment

output would also say:
ImmutableOopMap{r10=00p rbp=0op}

safepoint poll,

get this.flag
check flag and

switch to GC can happen here

loop back

JAVA

ASM

this —see how we read flag offit,and %rbp holds the reference to h1 that would be used later. Reference to h2 is missing
here. If GC happens during the loop, the thread would block when doing the safepoint poll, and at that time the runtime would
know exactly what registers to care for, with the help of this map.

Alternatives

Extending the reachability of the object stored in local variable to the given program point can be done by using that local
variable later. However, that is seldom easy to do without observable side effects. For example, "just" calling the method and

passing that local variable is not enough, because the method might get inlined, and the same optimization kicks in. Since Java 9,

thereis java.lang.ref.Reference: :reachabilityFence

(http://download.java.net/java/jdk9/docs/apifjava/lang/ref/Reference.html#reachabilityFence-java.lang.Object-) method that provides required
semantics.

If you "just” want to have C++ like "release on block exit" construct— to do something when leaving the block—then try-
finally is your friend in Java.

Observations

Reachability for Java local variables is not defined by syntactic blocks, it is at least to the last use, and may be exactly to the last
use. Using the mechanisms that notify when some object becomes unreachable (finalizers, weak/soft/phantom references) may
fall victim of "early" detection while execution had not yet left the method/block it was reachable from first.

http://download.java.net/java/jdk9/docs/api/java/lang/ref/Reference.html#reachabilityFence-java.lang.Object-

JVM Anatomy Quark #9: JNI Critical and GC Locker

Question

How does JNI Get*Critical cooperate with GC? What is GC Locker?

Theory

If you are familiar with JNI, you know there are two sets of methods that can get you the array contents. There is
Get<PrimitiveType>Array* family of methods, and then there are these fellas

(http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html#GetPrimitiveArrayCritical _ReleasePrimitiveArrayCritical):

€€
void * GetPrimitiveArrayCritical(JNIEnv *env, jarray array, jboolean *isCopy);
void ReleasePrimitiveArrayCritical(JNIEnv *env, jarray array, void *carray, jint mode);

The semantics of these two functions are very similar to the existing Get/Release*ArrayElements functions.
If possible, the VM returns a pointer to the primitive array; otherwise, a copy is made. However, there are
significant restrictions on how these functions can be used.

— JNI Guide
Chapter 4: JNI Functions

The benefit for these are obvious: instead of providing you with the copy of the Java array, VM may choose to return a direct
pointer, thus improving performance. That obviously comes with caveats, that are listed further down:

“After calling GetPrimitiveArrayCritical, the native code should not run for an extended period of time before
it calls ReleasePrimitiveArrayCritical. We must treat the code inside this pair of functions as running in a
“critical region.” Inside a critical region, native code must not call other JNI functions, or any system call
that may cause the current thread to block and wait for another Java thread. (For example, the current
thread must not call read on a stream being written by another Java thread.)

These restrictions make it more likely that the native code will obtain an uncopied version of the array,
even if the VM does not support pinning. For example, a VM may temporarily disable garbage collection

when the native code is holding a pointer to an array obtained via GetPrimitiveArrayCritical.

— JNI Guide
Chapter 4: JNI Functions

These paragraphs are read by some as if VM is stopping GC when critical region is running.

Actually, the only strong invariant for VM to maintain is that the object that is "critically" acquired is not moved. There are
different strategies the implementation can try:

1. Disable the GC completely while any critical object is acquired. This is by far the simplest coping strategy, because it does
not affect the rest of GC. The downside is that you have to block GC for an indefinite time (basically commiting to the mercy
of users "release"-ing quickly enough), which might get problematic.

2. Pin the object, and work around it during the collection. This is tricky to get right if collectors expect contiguous spaces to
allocate in, and/or expect the collection to process the entire heap subspace. For example, if you pin the object in young
generation in simple generational GC, you cannot now "ignore" what is left in young after the collection. You cannot move the
object from there either, because it breaks the very invariant you want to enforce.

3. Pin the subspace in heap that contains the object. Again, if GC is granular to entire generations, this is getting nowhere. But
if you have regionalized heap, then you can pin a single region, and avoid GC for that region alone, keeping everyone happy.

We have seen people relying on JNI Critical to disable GC temporarily, but that only works for option "a", and not every collector
employs the simplistic behavior like that.

Can we see this in practice?

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html#GetPrimitiveArrayCritical_ReleasePrimitiveArrayCritical

Experiment

As always, we can look into it by constructing the experiment that acquires the int[] array with JNI Critical, and then
deliberately ignores the suggestion to release the array after we are done with it. Instead, it would allocate and retain lots of
objects between the acquire and release:

JAVA
public class CriticalGC {

static final int ITERS = Integer.getInteger("iters", 100);
static final int ARR_SIZE = Integer.getInteger("arrSize", 10_000);
static final int WINDOW = Integer.getInteger("window", 10_000_000);

static native void acquire(int[] arr);
static native void release(int[] arr);

static final Object[] window = new Object[WINDOW];

public static void main(String... args) throws Throwable {
System.loadLibrary("CriticalGC");

int[] arr = new int[ARR_SIZE];

for (int i = 0; i < ITERS; i++) {
acquire(arr);
System.out.println("Acquired");
try {
for (int ¢ = 0; c < WINDOW; c++) {
window[c] = new Object();
}
} catch (Throwable t) {
// omit
} finally {
System.out.println("Releasing");
release(arr);
b
}

...and the native parts:

#include <jni.h>
#include <CriticalGC.h>

static jbyte* sink;

JNIEXPORT void JNICALL Java_CriticalGC_acquire
(JNIEnv* env, jclass klass, jintArray arr) {
sink = (*env)->GetPrimitiveArrayCritical(env, arr, 0);

}
JNIEXPORT void JNICALL Java_CriticalGC_release
(JNIEnv* env, jclass klass, jintArray arr) {

(*env)->ReleasePrimitiveArrayCritical(env, arr, sink, 0);

¥
We need to generate the appropriate headers, compile the native parts into a library, and then make sure JVM know where to

find that library. Everything is encapsulated here.

Parallel/CMS

First, obvious thing, Parallel:

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/critical.zip

$ make run-parallel
java -Djava.library.path=. -Xms4g -Xmx4g -verbose:gc -XX:+UseParallelGC CriticalGC
[0.745s][info][gc] Using Parallel

[29.098s][info]l[gc] GC(13) Pause Young (GCLocker Initiated GC) 1860M->1405M(3381M) 1651.290ms
Acquired

Releasing

[30.771s][info]l[gc] GC(14) Pause Young (GCLocker Initiated GC) 1863M->1408M(3381M) 1589.162ms
Acquired

Releasing

[32.567s][info]l[gc] GC(15) Pause Young (GCLocker Initiated GC) 1866M->1411M(3381M) 1710.092ms
Acquired

Releasing

1119.29user 3.71system 2:45.07elapsed 680%CPU (Oavgtext+Oavgdata 4782396maxresident)k
O0inputs+224outputs (Omajor+1481912minor)pagefaults Oswaps

Notice how GC is not happening in-between "Acquired" and "Released", this the implementation detail leaking out to us. But the
smoking gun is "GCLocker Initiated GC" message. GCLocker
(http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/f36e864e66a7/src/share/vm/ge/shared/gcLocker.hpp) is a lock that prevents GC from running
when JNI critical is acquired. See the relevant block

(http://hg.openjdk java.net/jdk9/jdk9/hotspot/file/f36e864e66a7/src/share/vm/prims/jni.cpp#13173) in OpenJDK codebase:

JNI_ENTRY(void*, jni_GetPrimitiveArrayCritical(JNIEnv *env, jarray array, jboolean *isCopy))
JINIWrapper("GetPrimitiveArrayCritical");
GCLocker::lock_critical(thread); // <--- acquire GCLocker!
if (isCopy != NULL) {
*isCopy = JNI_FALSE;
I

oop a = JNIHandles::resolve_non_null(array);

void* ret = arrayOop(a)->base(type);
return ret;
JNI_END

JNI_ENTRY(void, jni_ReleasePrimitiveArrayCritical(JNIEnv *env, jarray array, void *carray, jint mode))
JNIWrapper("ReleasePrimitiveArrayCritical");

// The array, carray and mode arguments are ignored
GCLocker: :unlock_critical(thread); // <--- release GCLocker!

JNI_END

If GC was attempted, JVM should see if anybody holds that lock. If anybody does, then at least for Parallel, CMS, and G1, we
cannot continue with GC. When the last critical JNI operation ends with "release", then VM checks if there are pending GC
blocked by GCLocker, and if there are, then it triggers GC
(http:/hg.openjdk.java.net/jdk9/jdk9/hotspot/file/f36e864e66a7/src/share/vm/ge/shared/gcLocker.cpp#1138). This yields "GCLocker Initiated GC"
collection.

G1

Of course, since we are playing with fire —doing weird things in JNI critical region — it can spectacularly blow up. This is
reproducible with G1:

$ make run-g1

java -Djava.library.path=. -Xms4g -Xmx4g -verbose:gc -XX:+UseG1GC CriticalGC
[0.012s][info][gc] Using G1

<HANGS>

Oops! It hangs all right. jstack will even say we are RUNNABLE , but waiting on some weird condition:

"main" #1 prio=5 os_prio=0 tid=0x00007fdeb4013800 nid=0x4fd9 waiting on condition [0x00007fdebd5e0000]
java.lang.Thread.State: RUNNABLE
at CriticalGC.main(CriticalGC.java:22)

The easiest way to have a clue about this to run with "fastdebug" build, which will then fail on this interesting assert:

http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/f36e864e66a7/src/share/vm/gc/shared/gcLocker.hpp
http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/f36e864e66a7/src/share/vm/prims/jni.cpp#l3173
http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/f36e864e66a7/src/share/vm/gc/shared/gcLocker.cpp#l138

#

A fatal error has been detected by the Java Runtime Environment:

#

Internal Error (/home/shade/trunks/jdk9-dev/hotspot/src/share/vm/gc/shared/gcLocker.cpp:96), pid=17842, tid=17843

assert(!JavaThread::current()->in_critical()) failed: Would deadlock

#

Native frames: (J=compiled Java code, A=aot compiled Java code, j=interpreted, Vv=VM code, C=native code)
[libjvm.so+0x15b5934] VMError::report_and_die(...)+0x4c4
[libjvm.so+0x15b644f] VMError::report_and_die(...)+0x2f
[libjvm.so+0xa2d262] report_vm_error(...)+0x112
[libjvm.so+0xc51ac5] GCLocker::stall_until_clear()+0xa5
[libjvm.so+0xb8b6ee] G1CollectedHeap::attempt_allocation_slow(...)+0x92e
[libjvm.so+0xba423d] G1CollectedHeap::attempt_allocation(...)+0x27d
[1libjvm.so+0xb93cef] G1CollectedHeap::allocate_new_tlab(...)+0x6f
[1libjvm.so+0x94bdba] CollectedHeap::allocate_from_tlab_slow(...)+0x1fa
[libjvm.so+0xd47cd7] InstanceKlass::allocate_instance(Thread*)+0xc77
[libjvm.so+0x13cfef0] OptoRuntime::new_instance_C(Klass*, JavaThread*)+0x830
~RuntimeStub::_new_instance_Java

87% c2 CriticalGC.main([Ljava/lang/String;)V (82 bytes) ...
~StubRoutines::call_stub
[libjvm.so+0xd99938] JavaCalls::call_helper(...)+0x858
[libjvm.so+0Oxdbe7ab] jni_invoke_static(...) ...

[1libjvm.so+0xdde621] jni_CallStaticVoidMethod+0x241
[1ibjli.so+0x463c] JavaMain+0xa8c
[libpthread.so.0+0x76ba] start_thread+0xca

NN<<<K<KLILCK<K<K<K<K<K<K<K<KKL<

Looking closely at this stack trace, we can reconstruct what had happened: we tried to allocate new object, there were no TLABs
(https://shipilev.net/jvm/anatomy-quarks/4-tlab-allocation/) to satisfy the allocations from, so we jumped to slowpath allocation trying to
get new TLAB. Then we discovered no TLABs are available, tried to allocate, failed, and discovered we need to wait for GCLocker
to initiate GC. Enter stall_until_clear to wait for this... but since we are the thread who holds the GCLocker, waiting here
leads to deadlock. Boom (http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/f36e864e66a7/src/share/vm/ge/shared/gcLocker.cpp#195).

This is within the specfication, because the test had tried to allocate things within the acquire-release block. Leaving the JNI
method without the paired release was a mistake that exposed us to this. If we haven’t left, we could not allocate in acquire-
release without calling JNI, thus violating the "thou shalt not call JNI functions" principle.

You can tune up the test for collectors to not to fail this way, but then you will discover that GCLocker delaying the collection
means we can start the GC when there is already too low space left in the heap, which will force us into Full GC. Oops.

Shenandoah

As described in theoreticals, the regionalized collector can pin the particular region holding the object, and leave that object
alone without collection until NI Critical is released. This is what Shenandoah (https://wiki.openjdk.java.net/display/shenandoah/Main)
is doing in its current implementation.

$ make run-shenandoah

java -Djava.library.path=. -Xms4g -Xmx4g -verbose:gc -XX:+UseShenandoahGC CriticalGC
Releasing

Acquired

[3.325s][info][gc] GC(6) Pause Init Mark 0.287ms

[3.502s]1[info][gc] GC(6) Concurrent marking 3607M->3879M(4096M) 176.534ms
[3.503s][info][gc] GC(6) Pause Final Mark 3879M->1089M(4096M) 0.546ms
[3.503s][info][gc] GC(6) Concurrent evacuation 1089M->1095M(4096M) 0.390ms
[3.504s][info][gc] GC(6) Concurrent reset bitmaps 0.715ms

Releasing

Acquired

41.79user 0.86system 0:12.37elapsed 344%CPU (Oavgtext+Oavgdata 4314256maxresident)k
O0inputs+1024outputs (Omajor+1085785minor)pagefaults Oswaps

Notice how the GC cycle started and finished while JNI Critical was acquired. Shenandoah just pinned the region holding the
array, and proceeded collecting other regions like nothing happened. It can even perform the JNI Critical on object that is in the
collected region, by evacuating it first, and then pinning the target region (that is obviously not in the collection set). This allows
to implement JNI Critical without GCLocker, and therefore without GC stalls.

Observations

https://shipilev.net/jvm/anatomy-quarks/4-tlab-allocation/
http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/f36e864e66a7/src/share/vm/gc/shared/gcLocker.cpp#l95
https://wiki.openjdk.java.net/display/shenandoah/Main

Handling JNI Critical requires assistance from VM to either disable GC with GCLocker-like mechanism, or pin the subspace
containing the object, or pin the object alone. Different GCs employ different strategies to deal with JNI Critical, and side-effects
visible when running with one collector —like delaying the GC cycle — may not be visible with another.

Please note that specification says: "Inside a critical region, native code must not call other JNI functions”, and this is the minimal
requirement. The example above underlines the fact that within the bounds of allowed specification, quality of implementation
defines how bad it would be to break the specification. Some GCs may let more things slide, others may be more restrictive. If
you want to be portable, adhere to the specification requirements, not implementation details.

Or, if you rely on implementation details (which is a bad idea), and you run into these problems using JNI, understand what
collectors are doing, and choose the approriate GC.

JVM Anatomy Quark #10: String.intern()

Question

How exactly String.intern() works? Should I avoid it?

Theory

If you have ever studied String Javadocs, you would know there is an interesting method in the public API:

(19

public String intern()

Returns a canonical representation for the string object. A pool of strings, initially empty, is maintained
privately by the class String.

When the intern method is invoked, if the pool already contains a string equal to this String object as
determined by the equals(Object) method, then the string from the pool is returned. Otherwise, this String
object is added to the pool and a reference to this String object is returned.

— JDK Javadoc
Jjava.lang.String

This reads as if String provides the user-accessible entry to String pool, and we can use it to optimize for memory, right?
However, that comes with a drawback: in Open]JDK, String.intern() isnative, and it actually calls into JVM, to intern the
String in the native JVM String pool. This is due the to the fact that String interning is a part of JDK-VM interface when both VM
native and JDK code have to agree on identity of particular String objects.

There are implications for having the implementation like that:

1. You need to cross the JDK-JVM interface on every intern() , which wastes cycles.

2. The performance is at the mercy of the native HashTable implementation, which may lag behind what is available in high-
performance Java world, especially under concurrent access.

3. Since Java Strings are references from the native VM structures, they become the part of GC rootset. In many cases, that
requires additional work during the GC pauses to process.

Does this matter?

Experiment: Throughput

Once again, we can construct the simple experiment. Both deduplication and interning and trivally implementable with
HashMap and ConcurrentHashMap , which gives us a very nice JMH (http://openjdk.java.net/projects/code-tools/jmh/) benchmark:

http://openjdk.java.net/projects/code-tools/jmh/

@State(Scope.Benchmark)
public class StringIntern {

@Param({"1", "100", "10000", "1000000"})
private int size;

private StringInterner str;
private CHMInterner chm;
private HMInterner hm;

@Setup

public void setup() {
str = new StringInterner();
chm = new CHMInterner();
hm = new HMInterner();

}

public static class StringInterner {
public String intern(String s) {
return s.intern();
}
}

@Benchmark
public void intern(Blackhole bh) {
for (int c = 0; c < size; c++) {
bh.consume(str.intern("String" + c));
+
}

public static class CHMInterner {
private final Map<String, String> map;

public CHMInterner() {
map = new ConcurrentHashMap<>();

j

public String intern(String s) {
String exist = map.putIfAbsent(s, s);
return (exist == null) ? s : exist;

}

@Benchmark
public void chm(Blackhole bh) {
for (int ¢ = 0; c < size; c++) {
bh.consume(chm.intern("String" + c));
+
+

public static class HMInterner {
private final Map<String, String> map;

public HMInterner() {
map = new HashMap<>();

}

public String intern(String s) {
String exist = map.putIfAbsent(s, s);
return (exist == null) ? s : exist;

¥

@Benchmark
public void hm(Blackhole bh) {
for (int ¢ = 0; c < size; c++) {
bh.consume(hm.intern("String" + c));

j

The test tries to intern lots of Strings, but the actual interning happens only for the first walk through the loop, and then we only
checking the String after the existing mappings. size parameter controls the number of Strings we intern, thus limiting the
String table size we are dealing with. This is the usual case with interners like that.

Running this with JDK 8u131:

Benchmark (size) Mode Cnt Score Error Units

StringIntern.chm 1 avgt 25 0.038 + 0.001 us/op
StringIntern.chm 100 avgt 25 4.030 + 0.013 us/op
StringIntern.chm 10000 avgt 25 516.483 + 3.638 us/op
StringIntern.chm 1000000 avgt 25 93588.623 + 4838.265 us/op
StringIntern.hm 1 avgt 25 0.028 + 0.001 us/op
StringIntern.hm 100 avgt 25 2.982 * 0.073 us/op
StringIntern.hm 10000 avgt 25 422.782 + 1.960 wus/op
StringIntern.hm 1000000 avgt 25 81194.779 + 4905.934 wus/op
StringIntern.intern 1 avgt 25 0.089 + 0.001 us/op
StringIntern.intern 100 avgt 25 9.324 + 0.096 us/op
StringIntern.intern 10000 avgt 25 1196.700 + 141.915 wus/op
StringIntern.intern 1000000 avgt 25 650243.474 + 36680.057 us/op

Oops, what gives? String.intern() is significantly slower! The answer lies somewhere in the native implementation ("native"
does not equal "better", folks), which is clearly visible in with perf record -g:

- 6.63% 0.00% java [unknown] [k] 0x00000006T8000041
- 0x618000041
- 6.41% Ox7faedd1ee354
- 6.41% 0x7faedd170426
- JVM_InternString
- 5.82% StringTable::intern
- 4.85% StringTable::intern
0.39% java_lang_String::equals
0.19% Monitor::lock
+ 0.00% StringTable: :basic_add
- 0.97% java_lang_String::as_unicode_string
resource_allocate_bytes
0.19% JNIHandleBlock::allocate_handle
0.19% JNIHandles: :make_local

While the JNI transition costs quite a bit on itself, we seem to spend quite some time in StringTable
(http:/hg.openjdk.java.net/jdk9/jdk9/hotspot/file/910e24afc502/src/share/vm/classfile/stringTable.cpp) implementation. Poking around it, you

will eventually discover -XX:+PrintStringTableStatistics
(http:/hg.openjdk.java.net/jdk9/jdk9/hotspot/file/910e24afc502/src/share/vm/runtime/globals.hpp#12578), which will print something like:

StringTable statistics:

Number of buckets : 60013 = 480104 bytes, avg 8.000
Number of entries : 1002714 = 24065136 bytes, avg 24.000
Number of literals : 1002714 = 64192616 bytes, avg 64.019
Total footprint : = 88737856 bytes

Average bucket size : 16.708 ; <---- 111111

16 elements per bucket in a chained hash table speaks "overload, overload, overload". What is worse, that string table is not
resizeable — although there was experimental work to make them resizable, that was shot down for "reasons" . It might be
alleviated with setting larger -XX:StringTableSize, for example to 10M:

http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/910e24afc502/src/share/vm/classfile/stringTable.cpp
http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/910e24afc502/src/share/vm/runtime/globals.hpp#l2578

Benchmark (size) Mode Cnt Score Error Units

Default, copied from above

StringIntern.chm 1 avgt 25 0.038 + 0.001 us/op
StringIntern.chm 100 avgt 25 4.030 £ 0.013 us/op
StringIntern.chm 10000 avgt 25 516.483 + 3.638 us/op
StringIntern.chm 1000000 avgt 25 93588.623 + 4838.265 us/op

Default, copied from above

StringIntern.intern 1 avgt 25 0.089 + 0.001 us/op
StringIntern.intern 100 avgt 25 9.324 + 0.096 wus/op
StringIntern.intern 10000 avgt 25 1196.700 + 141.915 wus/op
StringIntern.intern 1000000 avgt 25 650243.474 + 36680.057 us/op

StringTableSize = 10M

StringIntern.intern 1 avgt
StringIntern.intern 100 avgt
StringIntern.intern 10000 avgt
StringIntern.intern 1000000 avgt

0.097 + 0.041 us/op
10.174 + 5.026 wus/op
1152.387 * 558.044 us/op
130862.190 + 61200.783 us/op

v oo n

...but this is only a palliative measure, because you have to plan this in advance. You will waste memory if you blindly set String
table size to large value, and do not use it. Even with large StringTable that you fully use, the native call costs are still eating away
cycles.

Experiment: GC pauses

But what would trigger the most dramatic consequence of native String table is that it is the part of GC roots! Which means, it
should be scanned/updated by the garbage collector specially. In Open]DK, that means doing hard work during the pause.
Indeed, for Shenandoah (https://wiki.openjdk.java.net/display/shenandoah/Main) where pauses depend mostly on GC root set size,
having just 1M records in String table yields this:

$... StringIntern -p size=1000000 --jvmArgs "-XX:+UseShenandoahGC -Xlog:gc+stats -Xmx1g -Xms1g"
Initial Mark Pauses (G) = 0.03 s (a = 15667 us) (n = 2) (lvls, us = 15039, 15039, 15039, 15039, 16260)
Initial Mark Pauses (N) = 0.03 s (a = 15516 us) (n = 2) (lvls, us = 14844, 14844, 14844, 14844, 16088)
Scan Roots = 0.03 s (a = 15448 us) (n = 2) (lvls, us = 14844, 14844, 14844, 14844, 16018)
S: Thread Roots = 0.00 s (a = 64 us) (n = 2) (lvls, us = 41, 41, 41, 41, 87)
S: String Table Roots = 0.03 s (a = 13210 us) (n = 2) (lvls, us = 12695, 12695, 12695, 12695, 13544)
S: Universe Roots = 0.00 s (a = 2 us) (n =2) (lvls, us = 2, 2, 2, 2, 2)
S: JNI Roots = 0.00 s (a = 3 us) (n =2) (1lvls, us = 2, 2, 2, 2, 4)
S: JNI Weak Roots = 0.00 s (a = 35 us) (n = 2) (1lvls, us = 29, 29, 29, 29, 42)
S: Synchronizer Roots = 0.00 s (a = 0 us) (n =2) (lvls, us = 0, 0, 0, 0, 0)
S: Flat Profiler Roots = 0.00 s (a = 0 us) (n =2) (lvls, us = 0, 0, 0, 0, 0)
S: Management Roots = 0.00 s (a = 1T us) (n=2) (lvls, us = 1, 1, 1, 1, 1)
S: System Dict Roots = 0.00 s (a = 9 us) (n =2) (lvls, us = 8, 8, 8, 8, 11)
S: CLDG Roots = 0.00 s (a = 75 us) (n = 2) (lvls, us = 68, 68, 68, 68, 81)
S: JVMTI Roots = 0.00 s (a = 0 us) (n =2) (lvls, us = 0, 0, 0, 0, 1)

So, you have +13 ms per pause just because we decided to put more stuff in the root set.

This prompts some GC implementations to only do the String table cleanups when something heavy is also done. For example, it
makes little sense from JVM perspective to clean String table if classes were not unloaded — because loaded classes are the major
sources of interned Strings. So, this workload would exhibit interesting behaviors at least in G1 and CMS:

JAVA
public class InternMuch {

public static void main(String... args) {
for (int c = 0; ¢ < 1_000_000_000; c++) {
String s = "" + c + "root";
s.intern();
}
}

b

Running with CMS:

https://wiki.openjdk.java.net/display/shenandoah/Main

SHELL
$ java -XX:+UseConcMarkSweepGC -Xmx2g -Xms2g -verbose:gc -XX:StringTableSize=6661443 InternMuch

GC(7) Pause Young (Allocation Failure) 349M->349M(989M) 357.485ms
GC(8) Pause Initial Mark 354M->354M(989M) 3.605ms

GC(8) Concurrent Mark

GC(8) Concurrent Mark 1.711ms

GC(8) Concurrent Preclean

GC(8) Concurrent Preclean 0.523ms

GC(8) Concurrent Abortable Preclean

GC(8) Concurrent Abortable Preclean 935.176ms

GC(8) Pause Remark 512M->512M(989M) 512.290ms

GC(8) Concurrent Sweep

GC(8) Concurrent Sweep 310.167ms

GC(8) Concurrent Reset

GC(8) Concurrent Reset 0.404ms

GC(9) Pause Young (Allocation Failure) 349M->349M(989M) 369.925ms

So far so relatively good. Walking the overloaded String table takes a while. But the most damning thing would be to disable class
unloading with -XX:-ClassUnloading . This effectively
(http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/385668275400/src/share/vm/ge/cms/concurrentMarkSweepGeneration.cpp#12559) disables
(http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/385668275400/src/share/vm/ge/cms/concurrentMarkSweepGeneration.cpp#15239) String table
cleanup in regular GC cycles! You can guess what happens next:

SHELL
$ java -XX:+UseConcMarkSweepGC -Xmx2g -Xms2g -verbose:gc -XX:-ClassUnloading -XX:StringTableSize=6661443 InternMuch

GC(11) Pause Young (Allocation Failure) 273M->308M(989M) 338.999ms
GC(12) Pause Initial Mark 314M->314M(989M) 66.586ms

GC(12) Concurrent Mark

GC(12) Concurrent Mark 175.625ms

GC(12) Concurrent Preclean

GC(12) Concurrent Preclean 0.539ms

GC(12) Concurrent Abortable Preclean

GC(12) Concurrent Abortable Preclean 2549.523ms

GC(12) Pause Remark 696M->696M(989M) 133.920ms

GC(12) Concurrent Sweep

GC(12) Concurrent Sweep 175.949ms

GC(12) Concurrent Reset

GC(12) Concurrent Reset 0.463ms

GC(14) Pause Full (Allocation Failure) 859M->OM(989M) 1541.465ms <---- 111
GC(13) Pause Young (Allocation Failure) 859M->0M(989M) 1541.515ms

Full STW GC, my old friend. For CMS, there is ExplicitGCInvokesConcurrentAndUnloadsClasses that kinda alleviates that,
assuming user will call System.gc() sometimes.

Observations

We are only discussing the ways one can achieve interning/deduplication, under the presumption it is needed for

0 either memory footprint improvements, or low-level == optimization, or some other obscure need. Those needs
can be accepted or challenged separately. For more details about Java Strings, I'd plug my own talk,
"java.lang.String Catechism" (https://shipilev.net/#string-catechism).

For Open]DK, String.intern() isthe gateway to native JVM String table, and it comes with caveats: throughput, memory
footprint, pause time problems will await the users. It is very easy to underestimate the impact of these caveats. Hand-rolled
deduplicators/interners are working much more reliably, because they are working on Java side, are just the regular Java objects,
generally better sized/resized, and also can be thrown away completely when not needed anymore. GC-assisted String
deduplication (http://openjdk.java.net/jeps/192) does alleviate things even more.

In almost every project we were taking care of, removing String.intern() from the hotpaths, or optionally replacing it with a
handrolled deduplicator, was the very profitable performance optimization. Do not use String.intern() without thinking
very hard about it, okay?

http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/385668275400/src/share/vm/gc/cms/concurrentMarkSweepGeneration.cpp#l2559
http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/385668275400/src/share/vm/gc/cms/concurrentMarkSweepGeneration.cpp#l5239
https://shipilev.net/#string-catechism
http://openjdk.java.net/jeps/192

JVM Anatomy Quark #11: Moving GC and Locality

Question

So I have heard non-moving garbage collectors are okay, because $reasons. Slower allocations and fragmentation do not concern
me. Are there other implications?

Theory

If you open GC Handbook (http://gchandbook.org)), there is an a small section on "Is compaction necessary?". The last point they
make is:

“Mark—compact collectors may preserve the allocation order of objects in the heap or they may rearrange
them arbitrarily. Although arbitrary order collectors may be faster than other mark-compact collectors and
impose no space overheads, the mutator’s locality likely to suffer from an arbitrary scrambling of object
order.

— GC Handbook
3.5. Issues to consider. Locality

Does that really matter?

Experiment

Once again, we can construct the simple experiment to see how that works. The simplest test case we can come up with in the
array of references, that is either shuffled or not, and walk its contents. In JMH (http://openjdk.java.net/projects/code-tools/jmh/) speak,
something like this:

http://gchandbook.org/
http://openjdk.java.net/projects/code-tools/jmh/

import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.*;

@State(Scope.Thread)
@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@Warmup(iterations = 5, time = 1, timeUnit =

TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(value = 1, jvmArgsAppend = {"-Xms8g", "-Xmx8g", "-Xmn7g" })

public class ArrayWalkBench {

@Param({"16", "256", "4096", "65536", "1048576", "16777216"})

int size;

@Param({"false", "true"})
boolean shuffle;

@Param({"false", "true"})
boolean gc;

String[] arr;

@Setup

public void setup() throws IOException, InterruptedException {

arr = new String[size];

for (int c = 0; c < size; c++) {
arr[c] = "Value" + c;

+

if (shuffle) {

Collections.shuffle(Arrays.asList(arr), new Random(0xBAD_BEE));

H
if (go) {
for (int ¢ = 0; c < 5; c++) {
System.gc();
TimeUnit.SECONDS.sleep(1);
+
+
}
@Benchmark

public void walk(Blackhole bh) {
for (String val : arr) {
bh.consume(val.hashCode());
+

Note the experiment has three degrees of freedom:

JAVA

1. size of'the array in question — it is always a good idea to try several sizes when you want to implicate different caches in

the memory hierarchy, and afraid to put the benchmark into accidental sweet spot.

2. shuffle, that tells if we shuffle the array before walking it. Enabling shuffling simulates the case when insertions are not in

order and/or happen over time to different indexes.

3. gc, that tells to force GC after preparing the data set. Since workload is not allocating in the payload code, we need to force

GC explicitly, otherwise it would never run.

What would change with different settings? Let us take -XX:+UseParallelGC and see:

Benchmark (gc) (shuffle) (size) Mode Cnt Score Error Units

ArrayWalkBench.walk false false 16 avgt 5 0.051 + 0.001 us/op
ArrayWalkBench.walk false false 256 avgt 5 0.821 * 0.001 us/op
ArrayWalkBench.walk false false 4096 avgt 5 14.516 * 0.026 us/op
ArrayWalkBench.walk false false 65536 avgt 5 307.210 + 4.789 us/op
ArrayWalkBench.walk false false 1048576 avgt 5 4306.660 + 7.950 wus/op
ArrayWalkBench.walk false false 16777216 avgt 5 60561.476 + 925.685 wus/op
ArrayWalkBench.walk false true 16 avgt 5 0.051 * 0.001 us/op
ArrayWalkBench.walk false true 256 avgt 5 0.823 + 0.003 us/op
ArrayWalkBench.walk false true 4096 avgt 5 18.646 + 0.044 us/op
ArrayWalkBench.walk false true 65536 avgt 5 461.187 + 31.183 wus/op
ArrayWalkBench.walk false true 1048576 avgt 5 16350.706 * 75.757 us/op
ArrayWalkBench.walk false true 16777216 avgt 5 312296.960 + 632.552 us/op
ArrayWalkBench.walk true false 16 avgt 5 0.051 + 0.001 us/op
ArrayWalkBench.walk true false 256 avgt 5 0.820 + 0.004 us/op
ArrayWalkBench.walk true false 4096 avgt 5 13.639 * 0.063 us/op
ArrayWalkBench.walk true false 65536 avgt 5 174.475 + 0.771 us/op
ArrayWalkBench.walk true false 1048576 avgt 5 4345.980 + 15.230 us/op
ArrayWalkBench.walk true false 16777216 avgt 5 68687.192 + 1375.171 wus/op
ArrayWalkBench.walk true true 16 avgt 5 0.051 + 0.001 us/op
ArrayWalkBench.walk true true 256 avgt 5 0.828 + 0.010 wus/op
ArrayWalkBench.walk true true 4096 avgt 5 13.749 + 0.088 us/op
ArrayWalkBench.walk true true 65536 avgt 5 174.230 * 0.655 us/op
ArrayWalkBench.walk true true 1048576 avgt 5 4365.162 + 88.927 us/op
ArrayWalkBench.walk true true 16777216 avgt 5 70631.288 + 1144.980 us/op

What do we see here?

We see that walking the shuffled array is indeed much, much slower than the initial in-order array — around 4x times slower!
So, here is the hint: memory layout of object graph matters! You can control this in the code in some way during the initial
load, but not when external clients put something at (possibly random) indexes.

We also see that after GC happened, both cases improved, because GC had compacted the space taken by the array out of
temporary objects, if any, plus it moved the objects in memory so that they laid out in memory in array order. The difference
between shuffled and non-shuffled version is basically gone. Therefore, here is another hint: not only GCs introduce overheads
in your application, but they also pay back by helping to re-arrange objects to benefit locality, like this:

Object[] Object[]

.6

Strings ... Strings ...

If you only have a non-moving collector, you pay the price of GC without one of its major benefits! Indeed, this is one of the
reasons why no-op GC like Epsilon (http://openjdk.java.net/jeps/8174901) may run application slower than a compacting GC. This is
Epsilon running the same workload (gc = true is not applicable to it):

http://openjdk.java.net/jeps/8174901

Benchmark (gc) (shuffle) (size) Mode Cnt Score Error Units

ArrayWalkBench.walk false false 16 avgt 5 0.051 + 0.001 us/op
ArrayWalkBench.walk false false 256 avgt 5 0.826 * 0.006 us/op
ArrayWalkBench.walk false false 4096 avgt 5 14.556 + 0.049 us/op
ArrayWalkBench.walk false false 65536 avgt 5 274.073 £+ 37.163 us/op
ArrayWalkBench.walk false false 1048576 avgt 5 4383.223 + 997.953 us/op
ArrayWalkBench.walk false false 16777216 avgt 5 60322.171 + 266.683 us/op
ArrayWalkBench.walk false true 16 avgt 5 0.051 * 0.001 us/op
ArrayWalkBench.walk false true 256 avgt 5 0.826 + 0.007 wus/op
ArrayWalkBench.walk false true 4096 avgt 5 18.169 + 0.165 us/op
ArrayWalkBench.walk false true 65536 avgt 5 312.345 + 26.149 us/op
ArrayWalkBench.walk false true 1048576 avgt 5 16445.739 + 54.241 us/op
ArrayWalkBench.walk false true 16777216 avgt 5 311573.643 + 3650.280 us/op

Yes, you read that right, Epsilon runs slower than Parallel. Being a no-op GC, it does not incur GC overheads, but it also does not
bring any benefits.

The cause for performance difference is very simple, and visible with -prof perfnorm (we also use -opi 1048576 to divide by
number of elements):

Benchmark (gc) (shuffle) (size) Mode Cnt Score Error Units
walk true true 1048576 avgt 25 4.247 + 0.090 ns/op
walk:CPI true true 1048576 avgt 5 0.498 £ 0.050 #/op
walk:L1-dcache-load-misses true true 1048576 avgt 5 0.955 + 0.025 #/op
walk:L1-dcache-loads true true 1048576 avgt 5 12.149 + 0.432 #/op
walk:L1-dcache-stores true true 1048576 avgt 5 7.027 + 0.176 #/op
walk:LLC-load-misses true true 1048576 avgt 5 0.156 £+ 0.029 #/op
walk:LLC-loads true true 1048576 avgt 5 0.514 £ 0.014 #/op
walk:cycles true true 1048576 avgt 5 17.056 + 1.673 #/op
walk:instructions true true 1048576 avgt 5 34.223 + 0.860 #/op
walk false true 1048576 avgt 25 16.155 + 0.101 ns/op
walk:CPI false true 1048576 avgt 5 1.885 + 0.069 #/op
walk:L1-dcache-load-misses false true 1048576 avgt 5 1.922 + 0.076 #/op
walk:L1-dcache-loads false true 1048576 avgt 5 12.128 + 0.326 #/op
walk:L1-dcache-stores false true 1048576 avgt 5 7.032 £+ 0.212 #/op
walk:LLC-load-misses false true 1048576 avgt 5 1.031 £ 0.032 #/op
walk:LLC-loads false true 1048576 avgt 5 1.365 £ 0.101 #/op
walk:cycles false true 1048576 avgt 5 64.700 + 2.613 #/op
walk:instructions false true 1048576 avgt 5 34.335 + 1.564 #/op

With shuffled version, you have around 2 clocks per instruction, and almost every last-level cache load is a miss. No wonder it
runs slower: random walks over memory would cost you a lot.

There are also interesting visualizations for moving GCs in JOL (http://openjdk.java.net/projects/code-tools/jol/) Samples, under
JOLSample 22 Compaction

(http://hg.openjdk.java.net/code-tools/jol/file/018c0e12f70f/jol-samples/src/main/java/org/openjdk/jol/samples/JOLSample_22_Compaction.java),
JOLSample 23 Defragmentation
(http://hg.openjdk.java.net/code-tools/jol/file/018c0e12{70f/jol-samples/src/main/java/org/openjdk/jol/samples/JOLSample_23_Defragmentation.java),
and JOLSample 24 Colocation

(http://hg.openjdk.java.net/code-tools/jol/file/018c0e12{70f/jol-samples/src/main/java/org/openjdk/jol/samples/JOLSample_24 Colocation.java).

Observations

The irony of all GC discussions is that having GC is sometimes painful, but having no GC is sometimes painful too!
It is very easy to underestimate the locality implications of having the non-moving GC.

I think one of the reasons why CMS works fine, while not relocating the objects in "tenured" generation, is that it has the copying
"young" collection that at least makes attempt to compact before committing to particular object order in "tenured". STW
collectors like Serial and Parallel(Old) reap the benefits of this for almost every collection. Regionalized collectors like G1 and
Shenandoah can, should, and will exploit this too — although substantially more work is needed there because heap traversals
are decoupled from evacuation. It would be audacious to claim locality does not matter. Enter NUMA, where locality penalties
skyrocket, and be prepared to get royally screwed.

http://openjdk.java.net/projects/code-tools/jol/
http://hg.openjdk.java.net/code-tools/jol/file/018c0e12f70f/jol-samples/src/main/java/org/openjdk/jol/samples/JOLSample_22_Compaction.java
http://hg.openjdk.java.net/code-tools/jol/file/018c0e12f70f/jol-samples/src/main/java/org/openjdk/jol/samples/JOLSample_23_Defragmentation.java
http://hg.openjdk.java.net/code-tools/jol/file/018c0e12f70f/jol-samples/src/main/java/org/openjdk/jol/samples/JOLSample_24_Colocation.java

Note this locality property is about the object graphs, not the object layout itself. Even if a language provides the capabilities for
controlling the memory layout of objects, that in all cases that I am aware of, cares about the object interiors (or, at most array of
structures -like ensembles of objects), but not the arbitrary object graphs. Once you have put the regular objects in the particular
places in memory — for example, not the dense array, but linked list, linked queue, concurrent skiplist, chained hashtable, what
have you—you are stuck with the object graph linearized in memory in that particular way, unless you have a moving memory
manager.

Also note that this locality property is dynamic— that is, it is dependent on what is actually going on in a particular application
session, because applications change the object graph when running. You can teach your application to react to this
appropriately by cleverly relocating its own data structures, but then you will find yourself implementing the moving automatic
memory manager — or, a moving GC.

It also has nothing to do with the allocation rates — notice that the workload in almost purely static in the example above —and
this is usually the case for many real life collections, especially large ones, representing the in-memory chunks of moderately
frequently changed data. In this overwhelmingly frequent case it makes sense to let GC adapt to new layout, and then run with it
for a while, until it changes again. Hoping that application would put them in proper order to benefit locality by itself is a wishful
thinking, unless carefully designed in such a way.

Be ever so slightly wary when someone sells you the non-moving GC or no-GC solutions, and telling everything is going to be fine.
Because they probably shift the locality problems (if not all other memory management problems) to your code to handle. There
is no solution without (not so) hidden costs. Maybe it would be fine, the benefits would outweigh these known costs? Or maybe
you just oblivious of the costs, and sellers would diplomatically avoid the topic?

JVM Anatomy Quark #12: Native Memory Tracking

Question

I have 512 MB of available memory, so I set -Xms512m -Xmx512m, and my VM fails with "not enough memory to proceed". Why?

Theory

JVM is the native application, and it also needs memory to maintain its internal data structures that represent application code,
generated machine code, heap metadata, class metadata, internal profiling, etc. This is not accounted in Java heap, because most
of those things are native, allocated in C heap, or mmap-ed to memory. JVM also prepares lots of things expecting the active long-
running application with decent number of classes loaded, enough generated code created at runtime, etc. The defaults may be
too high for short-lived applications in memory-constrained scenarios.

OpenJDK 8 onwards has a nice internal VM feature, called "Native Memory Tracking" (NMT
(https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr007.html): it instruments all internal VM allocations and lets
categorize them, get the idea where they are coming from, etc. This feature is invaluable for understanding what VM uses
memory for.

NMT can be enabled with -XX:NativeMemoryTracking=summary . You can getjcmd to dump the current NMT data, or you may
request the data dump at JVM termination with -XX:+PrintNMTStatistics.Saying -XX:NativeMemoryTracking=detail
would get the memory map for mmaps and callstacks for mallocs.

Most of the time, "summary" suffices for the overview. But we can also read the "detail"-ed log, see where allocations are coming
from or for what, read the VM source code, and/or play with VM options to see what affects what. For example, take a simple
"Hello World" application, like this:

JAVA
public class Hello {

public static void main(String... args) {
System.out.println("Hello");
b
t

It is obvious that Java heap takes a significant part of allocated memory, let’s trim -Xmx16m -Xms16m, and see our baseline:

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr007.html

Native Memory Tracking:

Total: reserved=1373921KB, committed=74953KB

= Java Heap

- Class

- Thread

- Code

- Compiler

- Internal

- Symbol

- Native Memory Tracking

- Arena Chunk

(reserved=16384KB, committed=16384KB)
(mmap: reserved=16384KB, committed=16384KB)

(reserved=1066093KB, committed=14189KB)
(classes #391)

(malloc=9325KB #148)

(mmap: reserved=1056768KB, committed=4864KB)

(reserved=19614KB, committed=19614KB)
(thread #19)

(stack: reserved=19532KB, committed=19532KB)
(malloc=59KB #105)

(arena=22KB #38)

(reserved=249632KB, committed=2568KB)
(malloc=32KB #297)
(mmap: reserved=249600KB, committed=2536KB)

(reserved=10991KB, committed=10991KB)
(malloc=10383KB #129)
(mmap: reserved=608KB, committed=608KB)

(reserved=132KB, committed=132KB)
(malloc=2KB #23)
(arena=131KB #3)

(reserved=9444KB, committed=9444KB)
(malloc=9412KB #1373)
(mmap: reserved=32KB, committed=32KB)

(reserved=1356KB, committed=1356KB)
(malloc=900KB #65)
(arena=456KB #1)

(reserved=38KB, committed=38KB)
(malloc=3KB #41)
(tracking overhead=35KB)

(reserved=237KB, committed=237KB)
(malloc=237KB)

Okay. 75 MB for 16 MB Java heap is certainly unexpected.

Slimdown; Sane Parts

Let’s roll over different parts of that NMT output to see if those parts are tunable.

Start with something familiar:

= GC

(reserved=10991KB, committed=10991KB)
(malloc=10383KB #129)
(mmap: reserved=608KB, committed=608KB)

BASH

BASH

This accounts for GC native structures. The log says GC malloc-ed around 10 MB and mmap-ed around 0.6 MB. One should expect
this to grow with increasing heap size, if those structures describe something about the heap — for example, marking bitmaps,
card tables, remembered sets, etc. Indeed it does so:

BASH

Xms/Xmx = 512 MB
- GC (reserved=29543KB, committed=29543KB)
(malloc=10383KB #129)
(mmap: reserved=19160KB, committed=19160KB)
Xms/Xmx = 4 GB
- GC (reserved=163627KB, committed=163627KB)
(malloc=10383KB #129)
(mmap: reserved=153244KB, committed=153244KB)
Xms/Xmx = 16 GB

- GC (reserved=623339KB, committed=623339KB)
(malloc=10383KB #129)
(mmap: reserved=612956KB, committed=612956KB)

Quite probably malloc-ed parts are the C heap allocations of task queues for parallel GC, and mmap-ed regions are the bitmaps.
Not surprisingly, they grow with heap size, and take around 3-4% from the configured heap size. This raises deployment
questions, like in the original question: configuring the heap size to take all available physical memory will blow the
memory limits, possibly swapping, possibly invoking OOM Kkiller.

But that overhead is also dependent on the GC in use, because different GCs choose to represent Java heap differently. For
example, switching back to the most lightweight GC in OpenJDK, -XX:+UseSerialGC, yields this dramatic change in our test
case:

DIFF
-Total: reserved=1374184KB, committed=75216KB

+Total: reserved=1336541KB, committed=37573KB

-- Class (reserved=1066093KB, committed=14189KB)

+- Class (reserved=1056877KB, committed=4973KB)
(classes #391)

- (malloc=9325KB #148)

+ (malloc=109KB #127)
(mmap: reserved=1056768KB, committed=4864KB)

-- Thread (reserved=19614KB, committed=19614KB)

- (thread #19)

- (stack: reserved=19532KB, committed=19532KB)
= (malloc=59KB #105)

- (arena=22KB #38)

+- Thread (reserved=11357KB, committed=11357KB)

+ (thread #11)

+ (stack: reserved=11308KB, committed=11308KB)
it (malloc=36KB #57)

+ (arena=13KB #22)

-- GC (reserved=10991KB, committed=10991KB)
- (malloc=10383KB #129)
- (mmap: reserved=608KB, committed=608KB)
+- GC (reserved=67KB, committed=67KB)
(malloc=7KB #79)
(mmap: reserved=60KB, committed=60KB)

-- Internal (reserved=9444KB, committed=9444KB)
- (malloc=9412KB #1373)
+- Internal (reserved=204KB, committed=204KB)
Gt (malloc=172KB #1229)
(mmap: reserved=32KB, committed=32KB)

Note this improved both "GC" parts, because less metadata is allocated, and "Thread" part, because there are less GC threads
needed when switching from Parallel (default) to Serial GC. This means we can get partial improvement by tuning down the
number of GC threads for Parallel, G1, CMS, Shenandoah, etc. We’ll see about the thread stacks later. Note that changing the GC
or the number of GC threads will have performance implications — by changing this, you are selecting another point in
space-time tradeoffs.

It also improved "Class" parts, because metadata representation is slightly different. Can we squeeze out something from "Class"?
Let us try Class Data Sharing (CDS) (https://docs.oracle.com/javase/8/docs/technotes/guides/vim/class-data-sharing.html), enabled with -
Xshare:on:

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/class-data-sharing.html

DIFF
-Total: reserved=1336279KB, committed=37311KB

+Total: reserved=1372715KB, committed=36763KB

-- Symbol (reserved=1356KB, committed=1356KB)
- (malloc=900KB #65)
- (arena=456KB #1)

+- Symbol (reserved=503KB, committed=503KB)
(malloc=502KB #12)
(arena=1KB #1)

There we go, saved another 0.5 MB in internal symbol tables by loading the pre-parsed representation from the shared archive.

Now let’s focus on threads. The log would say:

BASH
- Thread (reserved=11357KB, committed=11357KB)

(thread #11)

(stack: reserved=11308KB, committed=11308KB)
(malloc=36KB #57)

(arena=13KB #22)

Looking into this, you can see that most of the space taken by threads are the thread stacks. You can try to trim the stack size
down from the default (which appears to be 1M in this example) to something less with -Xss . Note would yield a greater risk
of StackOverflowException -s, so if you do change this option, be sure to test all possible configurations of your software to
look out for ill effects. Adventurously setting this to 256 KB with -Xss256k yields:

DIFF
-Total: reserved=1372715KB, committed=36763KB

+Total: reserved=1368842KB, committed=32890KB

-- Thread (reserved=11357KB, committed=11357KB)
+- Thread (reserved=7517KB, committed=7517KB)
(thread #11)
- (stack: reserved=11308KB, committed=11308KB)
+ (stack: reserved=7468KB, committed=7468KB)
(malloc=36KB #57)
(arena=13KB #22)

Not bad, another 4 MB is gone. Of course, the improvement would be more drastic with more application threads, and it will
quite probably be the second largest consumer of memory after Java heap.

Continuing on threading, JIT compiler itself also has threads. This partially explains why we set stack size to 256 KB, but the data
above says the average stack size is still 7517 / 11 = 683 KB. Trimming the number of compiler threads down with -
XX:CICompilerCount=1 and setting -XX:-TieredCompilation to enable only the latest compilation tier yields:

DIFF
-Total: reserved=1368612KB, committed=32660KB

+Total: reserved=1165843KB, committed=29571KB

-- Thread (reserved=7517KB, committed=7517KB)

- (thread #11)

- (stack: reserved=7468KB, committed=7468KB)

- (malloc=36KB #57)

- (arena=13KB #22)

- Thread (reserved=4419KB, committed=4419KB)
(thread #8)
(stack: reserved=4384KB, committed=4384KB)
(malloc=26KB #42)
(arena=9KB #16)

+ + + + o+

Not bad, three threads are gone, and their stacks gone too! Again, this has performance implications: less compiler threads
means slower warmup.

Trimming down Java heap size, selecting appropriate GC, trimming down the number of VM threads, trimming down the Java
stack thread sizes and thread counts are the general techniques for reducing VM footprint in memory-constrained scenarios.
With these, we have trimmed down our 16 MB Java heap test case to:

DIFF
-Total: reserved=1373922KB, committed=74954KB

+Total: reserved=1165843KB, committed=29571KB

Slimdown: Insane Parts

A What is suggested in this section is insane. Use this at your own risk. Do not try this at home.

Moving to insane parts, which involve tuning down internal VM settings. This is not guaranteed to work, and may crash and
burn unexpectedly. For example, we can control the stack sizes required for our Java application by coding it carefully. But we
don’t know what is going on inside the JVM itself, so trimming down the stack size for VM threads is dangerous. Still, hilarious to
try with -XX:VMThreadStackSize=256:

DIFF
-Total: reserved=1165843KB, committed=29571KB

+Total: reserved=1163539KB, committed=27267KB

-- Thread (reserved=4419KB, committed=4419KB)

+- Thread (reserved=2115KB, committed=2115KB)
(thread #8)

- (stack: reserved=4384KB, committed=4384KB)

& (stack: reserved=2080KB, committed=2080KB)
(malloc=26KB #42)
(arena=9KB #16)

Ah yes, another 2 MB are gone along with compiler and GC thread stacks.

Let’s continue abusing the compiler code: why don’t we trim down the initial code cache size — the size of area for generated
code? Enter -XX:InitialCodeCacheSize=4096 (bytes!):

DIFF
-Total: reserved=1163539KB, committed=27267KB

+Total: reserved=1163506KB, committed=25226KB

-- Code (reserved=49941KB, committed=2557KB)

+- Code (reserved=49941KB, committed=549KB)
(malloc=21KB #257)

- (mmap: reserved=49920KB, committed=2536KB)

+ (mmap: reserved=49920KB, committed=528KB)

- GC (reserved=67KB, committed=67KB)
(malloc=7KB #78)

Ho-ho! This will balloon up once we hit heavy compilation, but so far so good.

Looking closer to "Class" again, we can see that most of the 4 MB committed for our Hello World is the initial metadata storage
size. We can trim it down with -XX:InitialBootClassLoaderMetaspaceSize=4096 (bytes!):

DIFF
-Total: reserved=1163506KB, committed=25226KB

+Total: reserved=1157404KB, committed=21172KB

-- Class (reserved=1056890KB, committed=4986KB)

+- Class (reserved=1050754KB, committed=898KB)
(classes #4)

- (malloc=122KB #83)

- (mmap: reserved=1056768KB, committed=4864KB)
(malloc=122KB #84)
(mmap: reserved=1050632KB, committed=776KB)

- Thread (reserved=2115KB, committed=2115KB)
(thread #8)

Overall, after all this madness, we came even closer to 16 MB of Java heap size, wasting only 8.5 MB on top of that:

DIFF
-Total: reserved=1165843KB, committed=29571KB

+Total: reserved=1157404KB, committed=21172KB

We can probably come even closer if we start yanking parts of JVM in our custom build.

Putting All Together

For fun, we can see how the native overhead changes with heap size on our test workload:

VM Native Overhead vs Heap Size: 1 Java Thread

100

=
k) Poee
o
.-E 1Y
2 10
o ;;

E iiigiii%i R

: .

1 BEAERenes
000
O OOOOOOOOOOOO 00000000000 00000000000ONOOOOO! 00000GO00000OO0OONOOOOO
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 210

Java heap size, MB

® Default (Parallel GC)

0 -XX:+UseParallelGC -XX:ParallelGCThreads=1

0 -XX:+UseSerialGC

@ -XX:+UseSerial GC -Xshare:on

O -XX:+UseSerial GC -Xshare:on -Xss256k

@ -XX:+UseSerialGC -Xshare:on -Xss256k -XX:-TieredCompilation -XX:CICompilerCount=1

@ Insane: -XX:+UseSerialGC -Xshare:on -Xss256k -XX:-TieredCompilation -XX:CICompilerCount=1 -XX:VMThreadStackSize=256

© Insane: -XX:+UseSerial GC -Xshare:on -Xss256k -XX:-TieredCompilation -XX:CICompilerCount=1 -XX:VMThreadStackSize=256 -XX:Initial CodeCacheSize=4096

O Insane: -XX:+UseSerial GC -Xshare:on -Xss256k -XX:-TieredCompilation -XX:CICompilerCount=1 -XX:VMThreadStackSize=256 -XX:Initial CodeCacheSize=4096 -XX:InitialBootClassLoaderMetaspaceSize=40¢

This confirms our gained intuition that GC overheads are the constant factor of Java heap size, and native VM overheads starts to
matter only on lower heap sizes when the absolute values for VM overhead start to become a factor in overall footprint. This
picture omits the second most important thing though: thread stacks.

Observations

Default JVM configuration is usually tailored to long-running server-class applications, and so its initial guesses about the GCs,
the initial sizes for internal data structures, stack sizes, etc. may be not appropriate for short-running memory-constrained

applications. Understanding what are the major memory hogs in current JVM configuration helps cramming more JVMs on the
host.

Using NMT to discover where VM spends memory is usually an enlightening exercise. It almost immediately leads to insights
where to get memory footprint improvements for the particular application. Hooking up online NMT monitor to performance
management systems would help to adjust the JVM parameters when running actual production applications. This is much,

much, much easier than trying to figure out what JVM is doing by parsing the opaque memory maps from e.g.
/proc/$pid/maps .

Also see "Open]DK and Containers" (https:/developers.redhat.com/blog/2017/04/04/openjdk-and-containers/) by Christine Flood.

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/images/nmt-overhead.svg
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/

JVM Anatomy Quark #13: Intergenerational Barriers

Question

Epsilon GC JEP (http://openjdk.java.net/jeps/8174901) mentions in its "Motivation" section, among other things:

(19

"Last-drop performance improvements: ... Even for non-allocating workloads, the choice of GC means
choosing the set of GC barriers that the workload has to use, even if no GC cycle actually happens. Most
Open]DK GCs are generational, and they emit at least one reference write barrier. Avoiding this barrier

brings the last bit of performance improvement."
What gives?

Theory

If any garbage collector wants to collect parts of managed heap without touching the entire heap, then it has to understand what
references are pointing into that collected part. Otherwise, it cannot reliably tell what is reachable in that collected part, thus
having to conservatively assume everything is reachable... and that puts it in position where nothing can be treated as garbage,
burning the idea to the ground. Second, it wants to understand which locations to update, if it ever moves any objects in that
collected part— this concerns mostly "outside" pointers that would not be visited when processing the collected part.

The simplest (and very effective) way to split the heap in parts is to segregate objects by age, that is, introduce generations
(https://en.wikipedia.org/wiki/Tracing_garbage_collection#Generational GC_.28ephemeral_GC.29). The key idea here is weak generational
hypothesis (http://www.memorymanagement.org/glossary/g.html#term-generational-hypothesis) that claims "new objects die young". The
practical thing that lets capitalize on weak generational hypothesis is that in marking collectors, the performance is dependent
on the number of surviving objects. Which means, we can have a young generation, where everything is mostly dead, process it
quickly and maybe more frequently, while old generation is kept aside.

However, there could be references from old to young generations that you need to take care of when collecting young
generation alone. Old generation is usually collected along with the entire heap, young—old references can be omitted from
tracking. Ditto for young—young and old—old references, because their referees would get visited in the same collection.

Taking Parallel GC from OpenJDK as the
simplest example, it records the old—»young

Card TabIeI I I I I I I I I I I I I I .j references with the help of Card Table: the
\J

coarse bitmap that spans the old generation.
When store happens, it needs to flip a bit in
that card table. That bit would mean that the

Old

- part of old generation "under the card" can
‘,“’ potentially have pointers to young gen, and
‘\““ it needs to be scanned when young gen is
You ng ‘ collected. For all this to work, reference

stores have to be augmented with write
barriers, little pieces of code that do card
table management.

Practice

Does that really matter in practice? It sometimes does! Take this workload as example:

http://openjdk.java.net/jeps/8174901
https://en.wikipedia.org/wiki/Tracing_garbage_collection#Generational_GC_.28ephemeral_GC.29
http://www.memorymanagement.org/glossary/g.html#term-generational-hypothesis

JAVA
@State(Scope.Benchmark)

@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(value = 3, jvmArgsAppend = {"-Xms4g", "-Xmx4g", "-Xmn2g"})
@Threads(Threads.MAX)

public class HashWalkBench {

@Param({"16", "256", "4096", "65536", "1048576", "16777216"})
int size;

Map<String, String> map;

@Setup

public void setup() throws Exception {
create();
System.gc();

}

private void create() {
String[] keys = new String[size];
String[] values = new String[size];
for (int ¢ = 0; c < size; c++) {
keys[c] = "Key" + c;
values[c] = "Value" + c;

map = new HashMap<>(size);

for (int ¢ = 0; c < size; c++) {
String key = keys[c];
String val = values[c];
map.put(key, val);

}
@Benchmark
public void walk(Blackhole bh) {
for (Map.Entry<String, String> e : map.entrySet()) {

bh.consume(e.getKey());
bh.consume(e.getValue());

It creates a HashMap , performs a few rounds of GC, and then walks it. Running it with Epsilon vs Parallel will yield:

SHELL

Benchmark (size) Mode Cnt Score Error Units
Epsilon

HashWalkBench.walk 16 avgt 15 0.238 + 0.005 us/op
HashWalkBench.walk 256 avgt 15 3.638 * 0.072 us/op
HashWalkBench.walk 4096 avgt 15 59.222 + 1.974 us/op
HashWalkBench.walk 65536 avgt 15 1102.590 + 4.331 us/op
HashWalkBench.walk 1048576 avgt 15 19683.680 + 195.086 us/op
HashWalkBench.walk 16777216 avgt 15 328319.596 + 7137.066 us/op

Parallel

HashWalkBench.walk 16 avgt 15 0.240 + 0.001 us/op
HashWalkBench.walk 256 avgt 15 3.679 + 0.078 us/op
HashWalkBench.walk 4096 avgt 15 64.778 * 0.275 us/op
HashWalkBench.walk 65536 avgt 15 1377.634 + 28.132 us/op
HashWalkBench.walk 1048576 avgt 15 25223.994 + 853.601 wus/op
HashWalkBench.walk 16777216 avgt 15 400679.042 + 8155.414 us/op

Wait, but haven’t we talked about the stores? Where is the store here? Apart from the infrastructure stores handled by JMH itself,
the interesting thing happens behind the for-each loop cover. It implicitly instantiates HashMap.EntrySetIterator , which saves
the current entry in its field. (It would have been scalarized, if escape analysis was not this fragile).

We can clearly see that store and the associated barrier in the generated code:

ASM

1.58% 0.91% ...ade2c: mov %edi,0x18(%r9) ; %r9 = iterator, 0x18(%r9) = field
0.27% 0.33% ...a4e30: mov %r9,%r11 ;. r11 = &iterator

0.26% 0.38% ...ad4e33: shr $0x9,%r11 ;r11 =r11 >> 9

0.13% 0.20% ...a4e37: movabs $0x7f2c535aa000,%rbx ; rbx = card table base

0.58% 0.57% ...aded41: mov %ri12b, (%rbx,%r11,1) ; put 0 to (rbx+r11)

There are a few observations here:

1. The card mark sets the entire byte, not just a bit. This avoids synchronization: most hardware can perform the byte store
atomically, without touching the data around it. This makes card table beefier than it could theoretically be, but still quite
dense: 1 byte of card table per 512 bytes of heap, notice the shift by 9.

2. The barrier happens unconditionally, while we only need to record old—young references. This seems practical: we don’t
have excess branches on hot path, and we trade card table that spans the entire heap, not only the old. Given how dense the
card table is, we would introduce only a tiny fraction of additional footprint. This also helps to move the ephemeral
boundary between young and old generations in collectors that can tune themselves, without having to patch the code.

3. The card table address is encoded in the generated code, which is practical again, because it is a native unmovable structure.
That saves memory loads, because we would have to poll the card table address from somewhere otherwise.

4. The card mark "set" is actually encoded as "0". This is again practical, because we ca then reuse the zero registers —
especially on architectures that have them explicitly —to get the source operand. It does not matter what value to use for
card table initialization, 0 or 1, later in native GC code.

This performance picture is further corroborated by hardware counters (normalized to operation, and then divided by 1M):

SHELL

Benchmark (size) Mode Cnt Score Error Units
Epsilon

HashWalkBench.walk 1048576 avgt 15 0.019 + 0.001 wus/op
HashWalkBench.walk:L1-dcache-load-misses 1048576 avgt 3 0.389 + 0.495 #/op
HashWalkBench.walk:L1-dcache-loads 1048576 avgt 3 25.439 + 2.411 #/0p
HashWalkBench.walk:L1-dcache-stores 1048576 avgt 3 20.090 £+ 1.184 #/op
HashWalkBench.walk:cycles 1048576 avgt 3 75.230 £ 11.333 #/op
HashWalkBench.walk:instructions 1048576 avgt 3 90.075 + 10.484 #/op
Parallel

HashWalkBench.walk 1048576 avgt 15 0.024 + 0.001 wus/op
HashWalkBench.walk:L1-dcache-load-misses 1048576 avgt 3 1.156 + 0.360 #/op
HashWalkBench.walk:L1-dcache-loads 1048576 avgt 3 25.417 £ 1.711 #/op
HashWalkBench.walk:L1-dcache-stores 1048576 avgt 3 23.265 + 3.552 #/op
HashWalkBench.walk:cycles 1048576 avgt 3 97.435 + 69.688 #/op
HashWalkBench.walk:instructions 1048576 avgt 3 102.477 £ 12.689 #/op

So, parallel does the same amount of loads (thanks to encoded card table pointer), and it makes 3 additional stores, that cost
around 22 additional cycles and 12 instructions. This addition seems to correspond to three write barriers in this particular
workload. Notice that L1 cache misses are ever so slightly greater too: because card mark stores pollute it, reducing the effective
cache capacity for the application.

Observations

GCs are usually coming with the set of barriers that affect application performance even when no actual GC work is happening.
Even in the case of very basic generational collector like Serial/Parallel, you have at least one reference store barrier that has to
record inter-generational barriers. More advanced collectors like G1 have even more sophisticated barriers that track references
between the regions. In some cases, that cost is painful to warrant tricks to avoid it, including the no-op GC, like Epsilon.

JVM Anatomy Quark #14: Constant Variables

Question

Are final instance fields ever trivially treated as constants?

Theory

If you read the Java Language Specification chapters that concerns themselves with describing the base semantics of final
variables (https:/docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.4), then you will discover a spooky paragraph:

“A constant variable is a final variable of primitive type or type String that is initialized with a constant
expression (§15.28). Whether a variable is a constant variable or not may have implications with respect to

class initialization (§12.4.1), binary compatibility (§13.1, §13.4.9), and definite assignment (§16 (Definite
Assignment)).

— Java Language Specification
4124

Brilliant! Is this observable in practice?

Practice

Consider this code. What does it print?

JAVA
import java.lang.reflect.Field;

public class ConstantValues {

final int fieldInit = 42;
final int instancelnit;
final int constructor;

{
instancelnit = 42;

¥

public ConstantValues() {
constructor = 42;

}

static void set(ConstantValues p, String field) throws Exception {
Field f = ConstantValues.class.getDeclaredField(field);
f.setAccessible(true);
f.setInt(p, 9000);

}
public static void main(String... args) throws Exception {

ConstantValues p = new ConstantValues();

set(p, "fieldInit");

set(p, "instancelnit");

set(p, "constructor");

System.out.println(p.fieldInit + " " + p.instanceIlnit + " " + p.constructor);
}

On my machine, it prints:

42 9000 9000

In other words, even though we had overwritten the "fieldInt" field, we don’t observe its new value. More confusingly, other two
variables seem to be happily updated. The answer is that two other fields are blank final fields, and the first field is constant
variable. If you look into the generated bytecode for the class above, then:

https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.4

SHELL

$ javap -c -v -p ConstantValues.class

final int fieldInit;
descriptor: I
flags: ACC_FINAL
ConstantValue: int 42 <---- oh...

final int instancelnit;
descriptor: I
flags: ACC_FINAL

final int constructor;
descriptor: I
flags: ACC_FINAL

public static void main(java.lang.String...) throws java.lang.Exception;
descriptor: ([Ljava/lang/String;)V
flags: ACC_PUBLIC, ACC_STATIC, ACC_VARARGS

Code:
41: bipush 42 // <--- Oh wow, inlined fieldInit field
43: invokevirtual #18 // StringBuilder.append
46: ldc #19 // String " "
48: invokevirtual #20 // StringBuilder.append
51: aload_1
52: getfield #3 // Field instanceInit:I
55: invokevirtual #18 // StringBuilder.append
58: ldc #19 // String ""
60: invokevirtual #20 // StringBuilder.append
63: aload_1
64: getfield #4 // Field constructor:I

67: invokevirtual #18 // StringBuilder.append
70: invokevirtual #21 // StringBuilder.toString
73: invokevirtual #22 // System.out.println

No wonder we do not see the update to "fieldInit" field: the javac itself had inlined its value at use, and there is no chance the
JVM would double-back and rewrite the bytecode to reflect something else.

This optimization is handled by the bytecode compiler itself. This has obvious performance benefits: no need for complicated
analysis in JIT compiler to make use of constness of constant variables. But, as always, that comes with a cost. Besides
implications for binary compatibility (for example, what happens if we recompile the class with new value?), which is briefly
discussed in relevant chapters of JLS (https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.4.9), this has interesting

implications on low-level benchmarking. For example, blindly trying to quantify if final modifier on instance field gives the

performance improvement for real classes, we might want to measure the most trivial thing:

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Fork(3)

@BenchmarkMode (Mode .AverageTime)

@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class FinallInitBench {
// Too lazy to actually build the example class with constructor that initializes
// final fields, like we have in production code. No worries, we shall just model
// this with naked fields. Right?

final int fx = 42; // Compiler complains about initialization? Okay, put 42 right here!
int x = 42;

@Benchmark
public int testFinal() {
return fx;

¥

@Benchmark
public int test() {
return x;

¥

JAVA

https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.4.9

Initializing the final field with its own initializer silently introduces the effect we are not probably after! Running this example
benchmark with "perfnorm" profiler right away to see the low-level performance counters, you get a spooky result: final field
access is slightly better, and it produces less loads!!!]

SHELL

Benchmark Mode Cnt Score Error Units
FinalInitBench.test avgt 9 1.920 + 0.002 ns/op
FinalInitBench.test:CPI avgt 3 0.291 £+ 0.039 #/op
FinalInitBench.test:L1-dcache-loads avgt 3 11.136 + 1.447 #/op
FinalInitBench.test:L1-dcache-stores avgt 3 3.042 + 0.327 #/op
FinalInitBench.test:cycles avgt 3 7.316 + 1.272 #/op
FinalInitBench.test:instructions avgt 3 25.178 + 2.242 #/op
FinalInitBench.testFinal avgt 9 1.901 £+ 0.001 ns/op
FinalInitBench.testFinal:CPI avgt 3 0.285 + 0.004 #/op
FinalInitBench.testFinal:L1-dcache-loads avgt 3 9.077 + 0.085 #/op <---
FinalInitBench.testFinal:L1-dcache-stores avgt 3 4.077 £+ 0.752 #/op
FinalInitBench.testFinal:cycles avgt 3 7.142 + 0.071 #/0p
FinalInitBench.testFinal:instructions avgt 3 25.102 + 0.422 #/op

This is because there is no field load in the generated code at all, and all we do is use the inlined constant from the incoming
bytecode:

SHELL

test

1.02% 1.02% mov 0x10(%r10),%edx ; <--- get field x

2.50% 1.79% nop

1.79% 1.60% callqg CONSUME

testFinal

8.25% 8.21% mov $0x2a,%edx ; <--- just use inlined "42"
1.79% 0.56% nop

1.35% 1.19% callqg CONSUME

Not a problem in itself, but that result would be different for blank final fields, which would be closer aligned with real-world
usages. So, a less lazier version:

JAVA
@Warmup(iterations = 5, time = 1, timeUnit =

@Measurement(iterations = 5, time = 1,
@Fork(3)
@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Benchmark)
public class FinalInitCnstrBench {
final int fx;
int x;

TimeUnit.SECONDS)
timeUnit = TimeUnit.SECONDS)

public FinalInitCnstrBench() {
this.fx = 42;
this.x = 42;

+

@Benchmark
public int
return

testFinal() {
fx;
}

@Benchmark
public int test() {
return x;

b

...produces more sensible results, where both tests produce equal performance: %]

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_1
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_2

Benchmark

FinalInitCnstrBench.
FinalInitCnstrBench.
.test:L1-dcache-loads
FinalInitCnstrBench.

FinalInitCnstrBench

FinalInitCnstrBench

FinalInitCnstrBench.
FinalInitCnstrBench.

FinalInitCnstrBench

FinalInitCnstrBench

Observations

test
test:CPI

test:L1-dcache-stores

.test:cycles
FinalInitCnstrBench.

test:instructions

testFinal
testFinal:CPI

.testFinal:L1-dcache-1loads
FinalInitCnstrBench.

testFinal:L1-dcache-stores

.testFinal:cycles
FinalInitCnstrBench.

testFinal:instructions

Mode
avgt
avgt
avgt
avgt
avgt
avgt

avgt
avgt
avgt
avgt
avgt
avgt

Cnt

w wwww o

w wwww o

Score

.922
.289
71
.042
.301
.235

.919
.287
.170
.039
.278
.314

+ + H+ + H+

+ + + + I+

Error
.003
.049
.429
.031
.445
.732

- OO - 0oO0o

.002
.014
.104
.864
.394
.588

O O o —= oo

Units
ns/op
#/0p
#/0p
#/0p
#/0p
#/0p

ns/op
#/0p
#/0p
#/0p
#/0p
#/0p

BASH

The constant propagation story in Java is complicated, and there are some interesting corner cases. Constant variables that are
treated specially by the bytecode compiler is one of those corner cases. It is most likely you will blow yourself up on this in low-
level benchmarking, not dealing with production code that initializes fields in constructors anyway. The need for capturing and
quantifying these corner cases is one of the reasons why JMH has "perfasm" and "perfnorm" profilers are there to make sense of

the results.

JVM Anatomy Quark #15: Just-In-Time Constants

Question

Surely there are constant values in the program that optimizers can exploit. Does JVM do any tricks there?

Theory

Of course, constant-based optimizations are among the most profitable ones around. Nothing beats not doing the work at run
time, when it can be done at compile time. But what is the constant? It seems that plain fields are not constants: they change all
the time. What about final -s? They should stay the same. But, since instance fields are the part of the object state, final
instance fields values also depend on the identity of the object in question:

JAVA
class M {

final int x;
M(int x) { this.x = x; }

M m1 = new M(1337);
M m2 = new M(8080);

void work(M m) {
return m.x; // what to compile in here, 1337 or 80807

}

Therefore, it stands to reason that if we compile method work above without knowing anything about the identity of the object
coming as the argument %], the only thing we can trust is static final fields: they are unchangeable because of final, and we
know exactly the identity of "holding object", because it is held by the class, not by the every individual object.

Can we observe this in practice?

Practice

Consider this JMH benchmark:

JAVA
@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(3)

@BenchmarkMode (Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class JustInTimeConstants {

static final long x_static_final = Long.getLong("divisor", 1000);
static long x_static = Long.getLong("divisor", 1000);
final long x_inst_final Long.getlLong("divisor", 1000);

long x_inst Long.getLong("divisor", 1000);

@Benchmark public long _static_final() { return 1000 / x_static_final; }
@Benchmark public long _static() { return 1000 / x_static;
@Benchmark public long _inst_final() { return 1000 / x_inst_final;
@Benchmark public long _inst() { return 1000 / x_inst;

o

It is carefully constructed so that compilers can use the fact that divisor is constant and optimize the division out. If we run this
test, this is what we shall see this:

SHELL

Benchmark Mode Cnt Score Error Units
JustInTimeConstants._inst avgt 15 9.670 + 0.014 ns/op
JustInTimeConstants._inst_final avgt 15 9.690 + 0.036 ns/op
JustInTimeConstants._static avgt 15 9.705 £ 0.015 ns/op
JustInTimeConstants._static_final avgt 15 1.899 + 0.001 ns/op

Briefly studying the hottest loop in this benchmark with -prof perfasm reveals a few implementation details and the reason
why some tests are faster.

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_3

_inst and _inst_final are not surprising: they read the field and use it as divisor. The bulk of cycles is spent doing the actual
integer division:

ASM
JustInTimeConstants._inst / _inst_final hottest loop

0.21%

2 mov 0x40(%rsp),%r10
0.02% | mov 0x18(%r10),%r10 ; get field x_inst / x_inst_final
| ...
0.13% | idiv %r10 ; ldiv
76.59% 95.38% | mov 0x38(%rsp),%rsi ; prepare and consume the value (JMH infra)
0.40% | mov %rax,%rdx
0.10% | callq CONSUME
| ...
1.51% | test %r11d,%r11d ; call @Benchmark again
L je BACK

_static is a bit more interesting: it reads the static field off the native class mirror, where static fields reside. Since runtime
knows what class we are dealing with (static field accesses are statically resolved!), we inline the constant pointer to mirror, and
access the field by its predefined offset. But, since we don’t know what is the value of the field —indeed someone could have
changed it after the code was generated — we still do the same integer division:

ASM
JustInTimeConstants._static hottest loop

0.04% » movabs $0x7826385f0,%r10 ; native mirror for JustInTimeConstants.class
0.02% | mov 0x70(%r10),%r10 ; get static x_static

| ...
0.02% | idiv %r10 ;*1div
72.78% 95.51% | mov 0x38(%rsp),%rsi ; prepare and consume the value (JMH infra)
0.38% | mov %rax,%rdx
0.04% 0.06% | datal6 xchg %ax,%ax

0.02% | callg CONSUME

| ...
0.13% | test %r11d,%r11d ; call @Benchmark again

L je BACK

_static_final isthe most interesting of them all. JIT compiler knows exactly the value it is dealing with, and so it can
aggressively optimize for it. Here, the loop computation just reuses the slot which holds the precomputed value of "1000 / 1000",
which is "1" [41;

ASM

JustInTimeConstants._static_final hottest loop
1.36% 1.40% 2 mov %r8, (%rsp)
7.73% 7.40% | mov 0x8(%rsp) ,%rdx ; <--- slot holding the "long" constant "1"
0.45% 0.51% | mov 0x38(%rsp),%rsi ; prepare and consume the value (JMH infra)
3.59% 3.24% | nop
1.44% 0.54% | callg CONSUME
| coo
3.46% 2.37% | test %r10d,%r10d ; call @Benchmark again
L

je BACK

So the performance is explained by compiler’s ability to constant fold through static final.

Observations

Note that in this example, the bytecode compiler (e.g. javac) has no idea what is the value of static final field is, because that
field is initialized with a runtime value. When JIT compilation happens, the class had succeeded initialization, and the value is
there, and can be used! This is really the just-in-time constant. This allows to develop the very efficient, yet runtime-adjustable
code: indeed the whole thing was thought up as the replacement for preprocessor-based asserts. 5! I frequently miss this kind of
trick in C++ land, where compilation is fully ahead-of-time, and thus you have to be creative if you want to have critical code
depend on runtime options.!6!

A significant part of the story is the interpreter / tiered compilation. Class initializers are usually cold code, because they are
executed once. But the more important thing is handling the lazy part of class initialization, when we want to load and initialize
class the very first time on the very first access to field. Interpreter or baseline JIT compiler (e.g. C1 in Hotspot) runs it for us. By
the time optimizing JIT compiler (e.g. C2 in Hotspot) runs for the same method, the classes that recompiled method needs are
usually fully initialized, and their static final -s are fully known.

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_4
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_5
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_6

JVM Anatomy Quark #16: Megamorphic Virtual Calls

Question

I have heard megamorphic virtual calls are so bad, they are getting called by interpreter, not optimizing compiler. Is that true?

Theory

If you have read numerous articles about virtual call optimization (https://shipilev.net/blog/2015/black-magic-method-dispatch/) in
Hotspot, you may have left with the belief that megamorphic calls are pure evil, because they invoke the slowpath handling, and
do not enjoy compiler optimizations. If you try to comprehend what Open]JDK does when it fails to devirtualize the call, you
might wonder that it crashes and burns performance-wise. But, consider that JVMs work decently well even with baseline
compilers, and in some cases even the interpreter performance is okay (and it matters for time-to-performance).

So, it would be premature to conclude that runtime just gives up?

Practice

Let us try and see how does the virtual call slowpath looks. For that, we make the artificial megamorphic call site in a JMH
benchmark: make the three subclasses visiting the same call site:

JAVA
import org.openjdk.jmh.annotations.*;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(1)

@BenchmarkMode (Mode .AverageTime)
@OoutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class VirtualCall {

static abstract class A {

int c1, c2, c3;

public abstract void m();
}

static class C1 extends A {
public void m() { cl++; }

}

static class C2 extends A {
public void m() { c2++; }

+

static class C3 extends A {
public void m() { c3++; }

+

A[] as;

@Param({"mono", "mega"})
private String mode;

@Setup
public void setup() {
as = new A[300];
boolean mega = mode.equals("mega");
for (int ¢ = 0; c < 300; c += 3) {
as[c] new C1();
as[c+1] = mega ? new C2() : new C1();
as[c+2] = mega ? new C3() : new C1();

}

@Benchmark
public void test() {
for (A a : as) {
a.m();
+

https://shipilev.net/blog/2015/black-magic-method-dispatch/

To simplify things for analysis, we invoke this with -XX:LoopUnrollLimit=1 -XX:-TieredCompilation : this will block loop
unrolling from complicating the disssembly, and disabling tiered compilation would guarantee compilation with the final
optimizing compiler. We don’t care about performance numbers all that much, but let’s have them to frame the discussion:

SHELL
Benchmark (mode) Mode Cnt Score Error Units
VirtualCall.test mono avgt 5 325.478 + 18.156 ns/op
VirtualCall.test mega avgt 5 1070.304 = 53.910 ns/op
To give you some taste of what would happen if we do not use the optimizing compiler on test, run with -
XX:CompileCommand=exclude,org.openjdk.VirtualCall: :test
SHELL

Benchmark (mode) Mode Cnt Score Error Units
VirtualCall.test mono avgt 5 11598.390 + 535.593 ns/op
VirtualCall.test mega avgt 5 11787.686 + 884.384 ns/op

+ I+

So, the megamorphic call does indeed cost something, but it is definitely not interpeter-bad performance. The difference between
"mono" and "mega" in optimized case is basically the call overhead: we spend 3ns per element for "mega" case, while spending
only 1ns per element in "mono" case.

How does "mega" case look like in perfasm ? Like this, with many things pruned for brevity:

. ASM
o [lloTEest REEEN 11looooc0000000000000000000000006000000000060006000000000030000000660000600

C2, org.openjdk.generated.VirtualCall_test_jmhTest::test_avgt_jmhStub, version 88 (143 bytes)

6.93% 5.40% 0x...5c450: mov 0x40(%rsp),%r9

2
| ...
3.65% 4.31% | O0x...5c47b: callg O0x...0bf60 ;*invokevirtual m
| ; - org.openjdk.VirtualCall::test@22 (line 76)
| : {virtual_call}
3.12% 2.34% |
3.33% 0.02% |
L

0x...5c480: inc %ebp
0x...5c482: cmp 0x10(%rsp) ,%ebp
0x...5c486: jl 0x...5c450

31.26% 21.77% <total for region 1>

B) o o o 13 = =) o A
C2, org.openjdk.VirtualCall$C1::m, version 84 (14 bytes) <--- mis-attributed :(

Decoding VtableStub vtbl[5]@12

3.95% 1.57% 0x...59bf0: mov 0x8(%rsi),%eax

3.73% 3.34% 0x...59bf3: shl $0x3,%rax

3.73% 5.04% 0x...59bf7: mov 0x1d0(%rax),%rbx

16.45% 22.42% 0x...59bfe: jmpg *0x40(%rbx) ; jump to target

0x...59c01: add %al, (%rax)
0x...59c03: add %al, (%rax)

27.87% 32.37% <total for region 2>

B & o o o 13 4= = o) o
C2, org.openjdk.VirtualCall$C3::m, version 86 (26 bytes)

{method} {0x00007f75aaf4dd50} 'm' '()V' in 'org/openjdk/VirtualCall$C3'

[Verified Entry Point]

17.82% 26.04% 0x...595c0: sub $0x18,%rsp
0.06% 0.04% 0x...595c7: mov %rbp,0x10(%rsp)

0x...595cc: incl 0x14(%rsi) ; C3++
3.53% 5.14% 0x...595cf: add $0x10,%rsp

0x...595d3: pop %rbp
3.29% 5.10% 0x...595d4: test %eax,0x9f01a26(%rip)
0.02% 0.02% 0x...595da: retq

24.73% 36.35% <total for region 3>

So the benchmarking loop calls into something, which we can assume is the virtual call handler, then it ends up with VirtualStub,
that is supposedly does what every other runtime does with virtual calls: jumps the the actual method with the help of Virtual
Method Table (VMT) (https://en.wikipedia.org/wiki/Virtual_method_table).l”}

But wait a minute, this does not compute! The disassembly says we are actually calling to 0x..0bf60, notinto VirtualStub that
is at 0x..59bf0 ?! And that call is hot, so the call target should also be hot, right? This is where runtime itself plays tricks on us.
Even if the compiler bails to optimize the virtual call, the runtime can handle "pessimistic" cases on its own. To diagnose this
better, we need to get the fastdebug Open]DK build (https:/builds.shipilev.net/openjdk-jdkX/), and supply a tracing option for Inline
Caches (IC) (https://fen.wikipedia.org/wiki/Inline_caching): -XX:+TraceIC.Additionally, we want to save the Hotspot log to file with -
prof perfasm:savelLog=true

Lo and behold!

SHELL
$ grep IC org.openjdk.VirtualCall.test-AverageTime.log

IC@0x00007fac4fcb428b: to megamorphic {method} {0x00007fabefa81880} 'm' ()V';
in 'org/openjdk/VirtualCall$C2'; entry: 0x00007fac4fcb2ab0

Okay, it says inline cache had acted for the call-site at 0x00007fac4fcb428b . Who is it? This is our Java call!

SHELL
$ grep -A 4 0x00007fac4fch428b: org.openjdk.VirtualCall.test-AverageTime.log

0.02% 0x00007fac4fcb428b: callqg 0x00007fac4fb7ddal
;*invokevirtual m {reexecute=0 rethrow=0 return_oop=0}
; - org.openjdk.VirtualCall::test@22 (line 76)
; {virtual_call}

But what was the address in that Java call? This is the resolving runtime stub:

SHELL
$ grep -C 2 0x00007fac4fb7dda0 org.openjdk.VirtualCall.test-AverageTime.log

0x00007fac4fb7dcdf: hlt
Decoding RuntimeStub - resolve_virtual_call 0x00007fac4fb7dd10
0x00007fac4fb7dda0: push %rbp
0x00007fac4fb7ddal: mov %rsp,%rbp
0x00007fac4fb7ddad: pushfq

This guy basically called to runtime, figured out what method we want to call, and then asked IC to patch the call to point to new
resolved address! Since that is the one-time action, no wonder we do not see it as the hot code. IC action line mentions changing
the entry to another address, which is, by the way, our actual VtableStub:

SHELL
$ grep -C 4 0x00007fac4fcb2ab0: org.openjdk.VirtualCall.test-AverageTime.log

Decoding VtableStub vtbl[5]@12
8.94% 6.49% 0x00007fac4fcb2ab0: mov 0x8(%rsi),%eax
0.16% 0.06% 0x00007fac4fcb2ab3: shl $0x3,%rax
0.20% 0.10% 0x00007fac4fcb2ab7: mov 0x1e0(%rax) ,%rbx
2.34% 1.90% 0x00007fac4fcb2abe: jmpg *0x40(%rbx)
0x00007fac4fcb2act: int3

In the end, no runtime/compiler calls were needed to dispatch over resolved call: the call-site just calls the VtableStub that does
the VMT dispatch —never leaving the generated machine code. This IC machinery would handle virtual monomorphic and static
calls in the similar way, pointing to the stub/address that does not do VMT dispatch.

What we see in initial JMH perfasm output is the generated code as it was looking after the compilation, but before the
execution and potential runtime patching.®!

Observations

Just because compiler had failed to optimize for the best case, it does not mean the worst case is abysmally worse. True, you will
give up some optimizations, but the overhead would not be so devastating that you would need to avoid virtual calls altogether.
This rhymes with the "Black Magic of (Java) Method Dispatch" conclusion

(https://shipilev.net/blog/2015/black-magic-method-dispatch/#_conclusion): unless you care very much, you don’t have to worry about call
performance.

https://en.wikipedia.org/wiki/Virtual_method_table
https://builds.shipilev.net/openjdk-jdkX/
https://en.wikipedia.org/wiki/Inline_caching
https://shipilev.net/blog/2015/black-magic-method-dispatch/#_conclusion
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_7
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_8

JVM Anatomy Quark #17: Trust Nonstatic Final Fields

Question

Is there any case when JVM can trust non-static final fields?

Theory

As we have seen in "#15: Just In Time Constants" (https://shipilev.net/jvm/anatomy-quarks/15-just-in-time-constants/), compilers routinely
trust static final fields, because the value is known not to depend on particular object, and it is known not to change. But
what if we know the object identity well, e.g. the reference itselfisin static final, can we then trustits final instance fields?
For example:

JAVA
class M {

final int x;
M(int x) { this.x = x; }
}

static final M KNOWN_M = new M(1337);

void work() {
// We know exactly the slot that holds the variable, can we just
// inline the value 1337 here?
return KNOWN_M.x;

}

The tricky question is, what happens if someone changes that field? Java Language Specification allows not seeing the update
like this, because the fields is final . Unfortunately, real frameworks manage to depend on stronger behavior: the field update
would be seen. The ongoing experiments with aggressively optimizing these cases and deoptimizing when the actual write
happens were tried (https://bugs.openjdk.java.net/browse/JDK-8058164). The current state is that some internal classes are implicitly
trusted (http://hg.openjdk.java.net/jdk/jdk/file/2c1af559e922/src/hotspot/share/ci/ciField.cpp#1203):

CPP
static bool trust_final_non_static_fields(ciInstanceKlass* holder) {

if (holder == NULL)
return false;
if (holder->name() == ciSymbol::java_lang_System())
// Never trust strangely unstable finals: System.out, etc.
return false;
// Even if general trusting is disabled, trust system-built closures in these packages.
if (holder->is_in_package("java/lang/invoke") || holder->is_in_package("sun/invoke"))
return true;
// Trust VM anonymous classes. They are private API (sun.misc.Unsafe) and can't be serialized,
// so there is no hacking of finals going on with them.
if (holder->is_anonymous())
return true;
// Trust final fields in all boxed classes
if (holder->is_box_klass())
return true;
// Trust final fields in String
if (holder->name() == ciSymbol::java_lang_String())
return true;
// Trust Atomic*FieldUpdaters: they are very important for performance, and make up one
// more reason not to use Unsafe, if their final fields are trusted. See more in JDK-8140483.

if (holder->name() == ciSymbol::java_util_concurrent_atomic_AtomicIntegerFieldUpdater_Impl() ||
holder->name() == ciSymbol::java_util_concurrent_atomic_AtomicLongFieldUpdater_CASUpdater() ||
holder->name() == ciSymbol::java_util_concurrent_atomic_AtomicLongFieldUpdater_LockedUpdater() ||
holder->name() == ciSymbol::java_util_concurrent_atomic_AtomicReferenceFieldUpdater_Impl()) {

return true;
b
return TrustFinalNonStaticFields;
+

...and regular final fields are only trusted when the experimental -XX:+TrustFinalNonStaticFields is provided.

Practice

https://shipilev.net/jvm/anatomy-quarks/15-just-in-time-constants/
https://bugs.openjdk.java.net/browse/JDK-8058164
http://hg.openjdk.java.net/jdk/jdk/file/2c1af559e922/src/hotspot/share/ci/ciField.cpp#l203

Can we see this in practice? Using the modified JMH benchmark from "#15: Just In Time Constants"
(https://shipilev.net/jvm/anatomy-quarks/15-just-in-time-constants/), but this time we use the final field from the object, not the object
itself:

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(3)

@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class TrustFinalFields {

static final T t_static_final;

static T t_static;
final T t_inst_final;
T t_inst;
static {

t_static_final = new T(1000);
t_static = new T(1000);

+

{
t_inst_final = new T(1000);
t_inst = new T(1000);

+

static class T {
final int x;

public T(int x) {
this.x = x;
+
+

@Benchmark public int _static_final() { return 1000 / t_static_final.x;
@Benchmark public int _static() { return 1000 / t_static.x;
@Benchmark public int _inst_final() { return 1000 / t_inst_final.x;
@Benchmark public int _inst() { return 1000 / t_inst.x;

R

In my machine, it yields:

Benchmark Mode Cnt Score Error Units
TrustFinalFields._inst avgt 15 4.316 + 0.003 ns/op
TrustFinalFields._inst_final avgt 15 4.317 + 0.002 ns/op
TrustFinalFields._static avgt 15 4.282 + 0.011 ns/op
TrustFinalFields._static_final avgt 15 4.202 + 0.002 ns/op

Soitseems asif static final did not help much. Indeed, if you look into the generated code:

0.02% ~» movabs $0x782b67520,%r10 ; {oop(a 'org/openjdk/TrustFinalFields$T';)}
| mov 0x10(%r10),%r10d ; get field $x
| ...
0.19% | cltd
0.02% | idiv %ri10d ; idiv
| ...
0.16% | test %r11d,%r11d ; check and run @Benchmark again
L je BACK

The object itself is trusted to be at given place in the heap ($0x782b67520), but we did not trust the field! Running the same with
-XX:+TrustFinalNonStaticFields yields:

Benchmark Mode Cnt Score Error Units
TrustFinalFields._inst avgt 15 4.318 + 0.001 ns/op
TrustFinalFields._inst_final avgt 15 4.317 + 0.003 ns/op
TrustFinalFields._static avgt 15 4.290 + 0.002 ns/op
TrustFinalFields._static_final avgt 15 1.901 + 0.001 ns/op # <--- !!!

https://shipilev.net/jvm/anatomy-quarks/15-just-in-time-constants/

...and here the final field is folded, as can be seen in perfasm output:

ASM
3.04%

2 mov %r10, (%rsp)
| mov 0x38(%rsp),%rsi
8.26% | mov $0x1,%edx ; <--- constant folded to 1
| ...
0.04% | test %r11d,%r11d ; check and run @Benchmark again
L e BACK

Observations

Trusting instance final fields requires knowing the object we are operating with. But even then, we may pragmatically do it
when we are sure it does not break applications — so, minimally, for known system classes. Constant folding through these final
fields is the corner-stone for performance story for MethodHandle -s, VarHandle -s*, Atomic*FieldUpdaters and other high-
performance implementations from the core library. Applications may try to use the experimental VM options, but the potential
breakage from misbehaving applications may severely dampen the benefits.

JVM Anatomy Quark #18: Scalar Replacement

Question

I have heard Hotspot can do stack allocation. Called Escape Analysis, and it is magical. Right?

Theory

This gets a fair bit of confusion. In "stack allocation", "allocation" seems to assume that the entire object is allocated on the stack
instead of the heap. But what really happens is that the compiler performs the so called Escape Analysis (EA)
(https://en.wikipedia.org/wiki/Escape_analysis), which can identify which newly created objects are not escaping into the heap, and
then it can do a few interesting optimizations. Note that EA itself is not the optimization, it is the analysis phase that gives
important pieces of data for the optimizer.[°!

One of the things that optimizer can do for non-escaping objects is to remap the accesses to the object fields to accesses to
synthetic local operands:['% perform Scalar Replacement. Since those operands are then handled by register allocator, some of
them may claim stack slots (get "spilled") in current method activation, and it might look like the object field block is allocated on
stack. But this is a false symmetry: operands may not even materialize at all, or may reside in registers, object header is not
created at all, etc. The operands that get mapped from object field accesses might not even be contiguous on stack! This is
different from stack allocation.

If stack allocation was really done, it would allocate the entire object storage on the stack, including the header and the fields,
and reference it in the generated code. The caveat in this scheme is that once the object is escaping, we would need to copy the
entire object block from the stack to the heap, because we cannot be sure current thread stays in the method and keeps this part
of the stack holding the object alive. Which means we have to intercept stores to the heap, in case we ever store stack-allocated
object —that is, do the GC write barrier.

Hotspot does not do stack allocations per se, but it does approximate that with Scalar Replacement.

Can we observe this in practice?

Practice

Consider this JMH benchmark. We create the object with a single field that is initialized off our input, and it reads the field right
away, discarding the object:

JAVA
import org.openjdk.jmh.annotations.*;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(3)

@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class ScalarReplacement {

int x;

@Benchmark

public int single() {
MyObject o = new MyObject(x);
return o.x;

b

static class MyObject {
final int x;
public MyObject(int x) {
this.x = x;

}

If you run the test with -prof gc, you would notice it does not allocate anything:

https://en.wikipedia.org/wiki/Escape_analysis
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_9
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_10

SHELL
Benchmark Mode Cnt Score Error Units

ScalarReplacement.single avgt 15 1.919 £+ 0.002 ns/op
ScalarReplacement.single:-gc.alloc.rate avgt 15 = 10-4 MB/sec
ScalarReplacement.single:-gc.alloc.rate.norm avgt 15 = 10-° B/op
ScalarReplacement.single: - gc.count avgt 15 =0 counts

-prof perfasm shows there is only a single access to field x left.

ASM
0000 [NOTEESTE RIZUEM T coooocooo000000000000000000000000000000000000600000000000000000

C2, level 4, org.openjdk.ScalarReplacement::single, version 459 (26 bytes)

[Verified Entry Point]

6.05% 2.82% 0x00007f79e1202900: sub $0x18,%rsp ; prolog

0.95% 0.78% 0x00007f79e1202907: mov %rbp,0x10(%rsp)

0.04% 0.21% 0x00007f79e120290c: mov 0xc(%rsi),%eax ; get field $x
5.80% 7.43% 0x00007f79e120290f: add $0x10,%rsp ; epilog

0x00007f79e1202913: pop %rbp
23.91% 33.34% 0x00007f79e1202914: test %eax,0x17f0b6e6(%rip)
0.21% 0.02% 0x00007f79e120291a: retq

Notice the magic of it: the compiler was able to detect that MyObject instance is not escaping, remapped its fields to local
operands, and then (drum-roll) identified that successive store to that operand follows the load, and eliminated that store-load
pair altogether — as it would do with local variables! Then, pruned the allocation, because it is not needed anymore, and any
reminiscent of the object had evaporated.

Of course, that requires a sophisticated EA implementation to identify non-escaping candidates. When EA breaks, Scalar
Replacement also breaks. The most trivial breakage in current Hotspot EA is when control flow merges before the access. For
example, if we have two different objects (yet with the same content), under the branch that selects either of them, EA breaks,
even though both objects are evidently (for us, humans) non-escaping:

JAVA
public class ScalarReplacement {

int x;
boolean flag;

@Setup(Level.Iteration)
public void shake() {
flag = ThreadLocalRandom.current().nextBoolean();

+
@Benchmark
public int split() {
MyObject o;
if (flag) {
o = new MyObject(x);
} else {
o = new MyObject(x);
+
return o.x;
+
/7 ...

Here, the code allocates:

SHELL
Benchmark Mode Cnt Score Error Units

ScalarReplacement.single avgt 15 1.919 £+ 0.002 ns/op
ScalarReplacement.single:-gc.alloc.rate avgt 15 = 10-4 MB/sec
ScalarReplacement.single:-gc.alloc.rate.norm avgt 15 = 10-° B/op
ScalarReplacement.single: - gc.count avgt 15 =0 counts
ScalarReplacement.split avgt 15 3.781 + 0.116 ns/op
ScalarReplacement.split:-gc.alloc.rate avgt 15 2691.543 + 81.183 MB/sec
ScalarReplacement.split:-gc.alloc.rate.norm avgt 15 16.000 + 0.001 B/op
ScalarReplacement.split: -gc.count avgt 15 1460.000 counts
ScalarReplacement.split:-gc.time avgt 15 929.000 ms

If that was a "true" stack allocation, it would trivially handle this case: it'd extend the stack at runtime for either allocation, do
the accesses, then scratch off the stack contents before leaving the method, and stack allocations would get retracted. The
complication with write barriers that should guard object escapes still stands.

Observations

Escape analysis is an interesting compiler technique that enables interesting optimizations. Scalar Replacement is one of them,
and it is not about putting the object storage on stack. Instead, it is about exploding the object and rewriting the code into local
accesses, and optimizing them further, sometimes spilling these accesses on stack when register pressure is high. In many cases
on critical hotpaths it can be successfully and profitably done.

But, EA is not ideal: if we cannot statically determine the object is not escaping, we have to assume it does. Complicated control
flow may bail earlier. Calling non-inlined — and thus opaque for current analysis —instance method bails. Doing some things
that rely on object identity bail, although trivial things like reference comparison with non-escaping objects gets folded
efficiently.

This is not an ideal optimization, but when it works, it works magnificently well. Further improvements in compiler technology
might widen the number of cases where EA works well. [11]

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_11

JVM Anatomy Quark #19: Lock Elision

Question

I have heard that JVM bails out any compiler optimization with locks, so if I write synchronized, this is what JVM has to do!
Right?

Theory

With current Java Memory Model, unobserved locks are not guaranteed to have any memory effects
(https://shipilev.net/blog/2016/close-encounters-of-jmm-kind/#wishful-unobserved-sync). Among other things, this means that
synchronization on non-shared objects is futile, and thus runtime does not have to do anything there. It still might, but not really
required, and this opens up optimization opportunities.

Therefore, if escape analysis figures out the object is non-escaping, compiler is free to eliminate synchronization. Is that
observable in practice?

Practice

Consider this simple JMH benchmark. We increment something with and without synchronization on new object:

JAVA
import org.openjdk.jmh.annotations.*;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(3)

@BenchmarkMode (Mode .AverageTime)
@OoutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class LockElision {

int x;

@Benchmark
public void baseline() {
X++

’

}

@Benchmark
public void locked() {
synchronized (new Object()) {
X++;

j

If we run this test, and enable -prof perfnorm profiler right away, this is what we shall see:

SHELL

Benchmark Mode Cnt Score Error Units
LockElision.baseline avgt 15 0.268 + 0.001 ns/op
LockElision.baseline:CPI avgt 3 0.200 + 0.009 #/op
LockElision.baseline:L1-dcache-loads avgt 3 2.035 £ 0.101 #/0p
LockElision.baseline:L1-dcache-stores avgt 3 =103 #/0p
LockElision.baseline:branches avgt 3 1.016 =+ 0.046 #/op
LockElision.baseline:cycles avgt 3 1.017 £+ 0.024 #/op
LockElision.baseline:instructions avgt 3 5.076 £+ 0.346 #/op
LockElision.locked avgt 15 0.268 £+ 0.001 ns/op
LockElision.locked:CPI avgt 3 0.200 + 0.005 #/op
LockElision.locked:L1-dcache-1loads avgt 3 2.024 + 0.237 #/op
LockElision.locked:L1-dcache-stores avgt 3 =103 #/0p
LockElision.locked:branches avgt 3 1.014 £+ 0.047 #/op
LockElision.locked:cycles avgt 3 1.015 + 0.012 #/op
LockElision.locked:instructions avgt 3 5.062 + 0.154 #/op

Whoa, the tests perform exactly the same: timing is the same, the number of loads, stores, cycles, instructions are the same. With
high probability, this means that the generated code is the same. Indeed it is, and looks like this:

https://shipilev.net/blog/2016/close-encounters-of-jmm-kind/#wishful-unobserved-sync

ASM
14.50% 16.97%

76.82% 76.05%
0.83% 0.10%
0.47% 0.78%
0.47% 0.36%

incl 0xc(%r8) ; increment field

movzbl 0x94(%r9),%r10d ; JMH infra: do another @Benchmark
add $0x1,%rbp

test %eax,0x15ec6bba(%rip)

test %r10d,%r10d

je BACK

—————

The lock is completely elided, there is nothing left out of allocation, out of synchronization, nothing. If we supply JVM flag -XX: -
EliminateLocks, or we disable EA with -XX:-DoEscapeAnalysis (that breaks every optimization that depends on EA,
including lock elision), then locked counters would balloon up:

SHELL

Benchmark Mode Cnt Score Error Units
LockElision.baseline avgt 15 0.268 + 0.001 ns/op
LockElision.baseline:CPI avgt 3 0.200 + 0.001 #/op
LockElision.baseline:L1-dcache-1loads avgt 3 2.029 + 0.082 #/op
LockElision.baseline:L1-dcache-stores avgt 3 0.001 £ 0.001 #/0p
LockElision.baseline:branches avgt 3 1.016 £+ 0.028 #/op
LockElision.baseline:cycles avgt 3 1.015 + 0.014 #/op
LockElision.baseline:instructions avgt 3 5.078 + 0.097 #/op
LockElision.locked avgt 15 11.590 + 0.009 ns/op
LockElision.locked:CPI avgt 3 0.998 + 0.208 #/op
LockElision.locked:L1-dcache-loads avgt 3 11.872 + 0.686 #/op
LockElision.locked:L1-dcache-stores avgt 3 5.024 + 1.019 #/op
LockElision.locked:branches avgt 3 9.027 £+ 1.840 #/op
LockElision.locked:cycles avgt 3 44.236 + 3.364 #/op
LockElision.locked:instructions avgt 3 44.307 + 9.954 #/op

...and show the cost of allocation and trivial synchronization.

Observations

Lock elision is another optimization that is enabled by escape analysis, and it removes some superfluous synchronization. This is
especially profitable when internally synchronized implementations are not escaping into the wild: then, we can dispense with
synchronization completely! This is a Zen of compiler optimizations —if no one ever sees the synchronized lock, does it make a
sound?

JVM Anatomy Quark #20: FPU Spills

Question

I'look into JVM-generated machine code, and see weird XMM register usages on x86, when my code has no floating-point or
vector operations at all. What is up with that?

Theory

FPU and vector units are ubiquitous in modern CPUs, and in many cases they provide the alternative sets of registers for FPU-
specific operations. For example, SSE and AVX extensions in Intel x86_64 have additional set of wide XMM, YMM and ZMM
registers that can be used in conjunction with wider instructions.

While the non-vector instruction set is not usually orthogonal with vector and non-vector registers (for example, we cannot use
general-purpose IMUL with XMM register on x86_64), these registers still provide an interesting storage option: we can
temporarily store data there, even if that data is not used for vector operations. 12!

Enter register allocation. The register allocator duty is to take the program representation with all the operands the program
needs in a particular compilation unit (method, for example), and map these virtual operands to actual machine registers

— allocate registers for them. In many real programs, the number of live virtual operands at given program location is greater
than the number of machine registers available. At that point, register allocator has to put some operands out of the registers
somewhere else —e.g. on stack — that is, spill the operands.

Now, we have 16 general purpose registers on x86_64 (not all of them are usable), and 16 more AVX registers on most modern
machines. Can we spill to XMM registers instead of the stack? Yes, we can! Does it bring any benefit?

Practice

Consider this simple JMH benchmark. We construct that benchmark in a very special way (assume Java has pre-processing
capabilities, for simplicity):

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_12

import org.openjdk.jmh.annotations.*;
import java.util.concurrent.TimeUnit;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(3)

@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class FPUSpills {

int s00, s01, s02, s03, s04, s05, s06, s07, s08, s09;
int s10, s11, s12, s13, s14, s15, s16, s17, s18, s19;
int s20, s21, s22, s23, s24;

int d00, d01, d02, d03, d04, d05, d06, d07, d08, d09;
int d10, d11, d12, d13, d14, d15, d16, d17, d18, d19;
int d20, d21, d22, d23, d24;

int sg;
volatile int vsg;

int dg;

@Benchmark
#ifdef ORDERED
public void ordered() {
#else
public void unordered() {
#endif
int v00 = s00; int v01 = s01; int v02 = s02; int v03 = s03; int v04 = s04;
int v05 = s05; int v06 = s06; int v07 = s07; int v08 = s08; int v09 = s09;
int v10 = s10; int v11 = s11; int v12 = s12; int v13 = s13; int v14 = s14;
int v15 = s15; int v16 = s16; int v17 = s17; int v18 = s18; int v19 = s19;
int v20 = s20; int v21 = s21; int v22 = s22; int v23 = s23; int v24 = s24;
#ifdef ORDERED
dg = vsg; // Confuse optimizer a little

#else
dg = sg; // Just a plain store...

#endif
d00 = v00; d01 = v01; d02 = v02; d03 = v03; d04 = vO04;
d05 = v05; d06 = v06; d07 = v07; dO8 = v08; d09 = v09;
d10 = v10; d11 = v11; d12 = v12; d13 = vi13; d14 = vi4;
d15 = v15; d16 = v16; d17 = v17; d18 = v18; d19 = v19;
d20 = v20; d21 = v21; d22 = v22; d23 = v23; d24 = v24;

}
+

It reads and writes multiple pairs of fields at once. Optimizers are not actually tied up
(https://shipilev.net/blog/2016/close-encounters-of-jmm-kind/#wishful-hb-actual) to the particular program order. Indeed, that is what we

would observe in unordered test:

Benchmark Mode Cnt Score Error Units
FPUSpills.unordered avgt 15 6.961 £+ 0.002 ns/op
FPUSpills.unordered:CPI avgt 3 0.458 + 0.024 #/op
FPUSpills.unordered:L1-dcache-loads avgt 3 28.057 + 0.730 #/op
FPUSpills.unordered:L1-dcache-stores avgt 3 26.082 + 1.235 #/op
FPUSpills.unordered:cycles avgt 3 26.165 + 1.575 #/op
FPUSpills.unordered:instructions avgt 3 57.099 £+ 0.971 #/op

This gives us around 26 load-store pairs, which corresponds roughly to 25 pairs we have in the test. But we don’t have 25 general
purpose registers! Perfasm reveals that optimizer had merged load-store pairs close to each other, so that register pressure is
much lower:

https://shipilev.net/blog/2016/close-encounters-of-jmm-kind/#wishful-hb-actual

ASM

0.38% 0.28% movzbl 0x94(%rcx),%r9od
0.25% 0.20% mov 0xc(%r11),%r10d ; getfield s00
0.04% 0.02% mov %r10d,0x70(%r8) ; putfield d00

(transfer repeats for multiple vars)
je BACK
At this point, we want to cheat the optimizer a little, and make a point of confusion so that all loads are performed well before
the stores. This is what ordered test does, and there, we can see the loads and stores are happening in bulk: first all the loads,

then all the stores. The register pressure is highest at the point where all the loads have completed, but none of the stores have
started yet. Even then, we have no significant difference against unordered:

SHELL

Benchmark Mode Cnt Score Error Units
FPUSpills.unordered avgt 15 6.961 £+ 0.002 ns/op
FPUSpills.unordered:CPI avgt 3 0.458 + 0.024 #/op
FPUSpills.unordered:L1-dcache-loads avgt 3 28.057 + 0.730 #/op
FPUSpills.unordered:L1-dcache-stores avgt 3 26.082 + 1.235 #/op
FPUSpills.unordered:cycles avgt 3 26.165 + 1.575 #/op
FPUSpills.unordered:instructions avgt 3 57.099 + 0.971 #/0p
FPUSpills.ordered avgt 15 7.961 + 0.008 ns/op
FPUSpills.ordered:CPI avgt 3 0.329 £+ 0.026 #/op
FPUSpills.ordered:L1-dcache-loads avgt 3 29.070 £+ 1.361 #/op
FPUSpills.ordered:L1-dcache-stores avgt 3 26.131 + 2.243 #/op
FPUSpills.ordered:cycles avgt 3 30.065 + 0.821 #/0p
FPUSpills.ordered:instructions avgt 3 91.449 + 4.839 #/op

...and that is because we have managed to spill operands to XMM registers, not on stack:

ASM

(more unspills and putfields)

3.08% 3.79% ~» vmovq %xmmO,%r11

| ...
0.25% 0.20% | mov 0xc(%r11),%r10d ; getfield s00
0.02% | vmovd %r10d, %xmm4 ; <--- FPU SPILL
0.25% 0.20% | mov 0x10(%r11),%r10d ; getfield sO1
0.02% | vmovd %r10d, %xmm5 ; <--- FPU SPILL

|

| (more reads and spills to XMM registers)

| ...
0.12% 0.02% | mov 0x60(%r10),%r13d ; getfield s21

|

| (more reads into registers)

| ...

| oocoooe READS ARE FINISHED, WRITES START ------
0.18% 0.16% | mov %r13d,0xc4(%rdi) ; putfield d21

|

| (more reads from registers and putfileds)

| ...
2.77% 3.10% | vmovd %xmm5,%r11d : <--- FPU UNSPILL
0.02% | mov %r11d,0x78(%rdi) ; putfield do1
2.13% 2.34% | vmovd %xmm4,%r11d ; <--- FPU UNSPILL
0.02% | mov %r11d,0x70(%rdi) ; putfield do0O

|

|

|

L

je BACK

Notice that we do use general-purpose registers (GPRs) for some operands, but when they are depleted, we spill. "Then" is ill-
defined here, because we appear to first spill, and then use GPRs, but this is a false appearance, because register allocators may
operate on the complete graph.3l,

The latency of XMM spills seems minimal: even though we do claim more instructions for spills, they execute very efficiently and
fill the pipelining gaps: with 34 additional instructions, which means around 17 spill pairs, we have claimed only 4 additional
cycles. Note that it would be incorrect to compute the CPI as 4/34 = ~0.11 clk/insn, which would be larger than current CPUs are
capable of. But the improvement is real, because we use execution blocks we weren’t using before.

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_13

The claims of efficiency mean nothing, if we don’t have anything to compare with. But here, we do! We can instruct Hotspot to

avoid using FPU spills with -XX:-UseFPUForSpilling, which gives us the idea how much do we win with XMM spills:

Benchmark

Default

FPUSpills.
FPUSpills.
FPUSpills.
FPUSpills.
FPUSpills.
FPUSpills.

ordered
ordered
ordered
ordered
ordered
ordered

:CPI
:L1-dcache-1loads
:L1-dcache-stores
:cycles
;instructions

-XX:-UseFPUForSpilling

FPUSpills.
FPUSpills.
FPUSpills.
FPUSpills.
FPUSpills.
FPUSpills.

ordered

ordered:
ordered:
ordered:
ordered:
ordered:

CPI
L1-dcache-1loads
L1-dcache-stores
cycles
instructions

Mode

avgt
avgt
avgt
avgt
avgt
avgt

avgt
avgt
avgt
avgt
avgt
avgt

Cnt Score

w wwwwu

91

41
41
91

wwwwwuwum

10.
.455
47.

.961
.329
29
26.
30.
.449

070
131
065

976

327

.078
.553
.264

+ + + + + I+

+ + + + + I+

Error

.008
.026
.361
.243
.821
.839

A ON-= OO

.003
.053
.13
.887
.641
.312

NN = U OO

Units

ns/op
#/0p
#/0p
#/0p
#/0p
#/0p

ns/op
#/0p
#/0p
#/0p
#/0p
#/0p

SHELL

Oh, see the increased load/store counters per operation? These are stack spills: the stack itself, while fast, still resides in memory,

and thus accesses to stack land in L1 cache. It is roughly the same 17 additional spill pairs, but now they take ~11 cycles. The

throughput of L1 cache is the limiting factor here.

Finally, we can eyeball the perfasm output for -XX:-UseFPUForSpilling:

2.45%

0.50%
.02%
2.04%

o

0.12%

3.47%

1.81%
0.29%
2.10%

1.21%

0.31%

1.29%

0.19%

4.45%

2.68%
.13%
2.12%

o

——F———-m —- - - — N

je BACK

mov 0x70(%rsp),%r11

mov 0xc(%r11),%r10d
mov %r10d,0x10(%rsp)
mov 0x10(%r11),%r10d
mov %r10d,0x14(%rsp)

mov 0x64(%r10) ,%ebp

mov 0x14(%rsp),%r10d
mov %r10d,0x78(%rdi)
mov 0x10(%rsp),%r10d
mov %r10d,0x70(%rdi)

; getfield s00

; <--- stack spill!

; getfield sO1

; <--- stack spill!

; getfield s22

; putfield d22

. (more reads into registers)

. (more reads and spills to stack) ...

------- READS ARE FINISHED, WRITES START
mov %ebp, 0xc8(%rdi)

. (more reads from registers and putfields)

; <--- stack unspill

'

; putfield dO1

; <--- stack unspill

’

. (more unspills and putfields)

; putfield d0O

Yup, the stack spills are at the similar places where we had XMM spills.

Observations

ASM

FPU spills are the nice trick to alleviate register pressure problems. While it does not increase the number of registers available
for general operations, it does provide a faster temporary storage for spills: so when we need just a few additional spill slots, we

can avoid tripping to L1 cache-backed stack for this.

This is sometimes the cause of interesting performance deviations: if FPU spills are not used on some critical path, we may see
diminished performance. For example, introducing a slow-path GC barrier call that is assumed to trash the FPU registers may tell
compiler to get back to usual stack-based spills, without trying anything fancy.

In Hotspot, -XX:+UseFPUForSpilling is enabled by default for SSE-capable x86 platforms, ARMv7, and AArch64. So, this works
with most of your programs, whether you know about this trick or not.

JVM Anatomy Quark #21: Heap Uncommit

Question

I'want my memory back. That was not a question.

Theory

JVM uses memory for different reasons, to store its internal VM state in native memory, as well as providing the storage for Java
objects ("Java heap"). We have seen the native memory part of the story in "Native Memory Tracking"
(https://shipilev.net/jvm/anatomy-quarks/12-native-memory-tracking/), but the major contender in many applications is the Java heap

itself.

Java heap is normally managed by automatic memory manager, sometimes called garbage collector. '*! Naive GCs would
allocate the large block of memory from the underlying OS memory manager, and slice it themselves for accepting allocations.
This immediately means that even if there are only a few Java objects in the heap, from the perspective of OS the JVM process
had acquired all the possible memory for the Java heap. %!

So, if we want to have unused parts of Java heap returned back to OS, we need cooperation from the GC.

There are two ways to achieve this cooperation: do more frequent GCs instead of "expanding" the Java heap to -Xmx ; or explicit
uncommit of unused parts of Java heap, even after Java heap is inflated to -Xmx . First way helps only so much, and usually in
earlier phases of application lifetime — eventually, applications would like to allocate a lot. In this piece, we would concentrate
on the second part, what to do when heap is already inflated.

What do modern GCs do on this front?

Experimental Setup

Footprint measurement is tricky, because we have to define what footprint actually is. Since we are talking about the footprint
from the perspective of OS, it makes most sense to measure the RSS of the entire JVM process, which would include both native
VM memory and Java heap.

The other significant question is when to measure the footprint. It stands to reason that the amount of application data in
different phases of application lifecycle is different. That is especially true when application deliberately optimizes for footprint,
with lazy/delayed operations that only happen when the actual work comes along. The easiest mistake to make while capacity
planning for footprint is to start such application, snapshot its footprint, and then blow all estimates when the actual work comes
in.

Automatic memory managers usually react on what is happening to application: they trigger GCs based on allocation pressure,
free space availability, idleness, etc. Measuring footprint only in active phase is probably not very telling either. This is further
exarcebated by observation that most applications in the world (outside the high load servers) are idle most of the time, or run
on low duty cycle.

All this means we need to have the application going through different lifecycle phases to see the faces of the memory footprint
story. Let us take simple spring-boot-petclinic project (https://github.com/spring-projects/spring-petclinic) and run it with different GCs.

These are the configurations we use:

e Serial GC: the go-to GC for small-heap applications. It has low native overhead, a bit more aggressive GC policies, etc;
® G1 GC: the workhorse of Open]DK, default since JDK 9;

e Shenandoah GC (https://wiki.openjdk.java.net/display/shenandoah/Main): the concurrent GC from Red Hat. We include it here to
show some behaviors footprint-savvy GC would have. [16] For the purpose of this experiment, Shenandoah runs in two modes:
default mode, and compact mode that tunes collector for lowest footprint. (17!

The experiment is driven by this simple script. We use Open]DK 11, as decently recent JDK, but the same can be demonstrated
with OpenJDK 8, as GC behaviors are not significantly different between 8 and 11 in this test.

Results and Discussion

Start+Idle

https://shipilev.net/jvm/anatomy-quarks/12-native-memory-tracking/
https://github.com/spring-projects/spring-petclinic
https://wiki.openjdk.java.net/display/shenandoah/Main
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/run.sh
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_14
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_15
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_16
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_17

Let us digest the RSS charts. What can we see here?

spring-boot-petclinic, wrk2 http test, 1000 RPS, OpenJDK 11 x86-64, -Xmx1g

1600 rrri ||||||||||||| ||||||||||||||||||| IIIIIIIIIIIIIIIIIII [I A | i 11T

-Start Idle Load Idle GCO Id{e -

1200 — -—

m 2 -

= - o

- 800 — —

) | -
2

400

0 LLna IIIIIIIIIIIII|IIIIIIII|IIJ_I

0 10 20 30 40 50 60 70
time, sec
Serial — Shenandoah (default)
G1 Shenandoah (compact) ——

During startup, all GCs try to cope with small initial heap, and many do frequent GCs. This keeps them from inflating the heap
too much. After initial active phase is done, workloads stabilize on some particular footprint level. In absence of any GC triggers,
this level would be largerly defined by heuristics used for triggering the GC during startup, even if the amount of data
stored in heap is the same. This gets especially quirky when heuristics has to guess what user wanted from the acupuncture of
100+ GC options.

Load

Same RSS chart as above, repeated for convenience:

spring-boot-petclinic, wrk2 http test, 1000 RPS, OpenJDK 11 x86-64, -Xmx1g

1600 (NRRRNNRENRNRRNRNER
Load
1200
2a)
=
- 800
95)
2 v
400
0 IIIIIIIIIIIIIIIIIII
0 10 20 30 40 50 60 70
time, sec
Serial — Shenandoah (default)
G1 Shenandoah (compact) ——

When load comes, GC heuristics again have to decide a few things. Depending on GC, its implementation and configuration, it
has to decide whether to expand the heap, or do more aggressive GC cycles.

Here, Serial GC decided to perform more cycles. G1 inflated to around 3/4 of the max heap, and started doing moderately
frequent cycles to cope with allocation pressure. Shenandoah in default mode, being a concurrent GC running in dense heap,
opted to inflate the heap as much as possible to maintain application concurrency without too frequent cycles. Shenandoah in
compact mode, being instructed to maintain low footprint, opted to make much more aggressive cycles.

This is corroborated by the actual GC frequency logs:

spring-boot-petclinic, wrk2 http test, 1000 RPS, OpenJDK 11 x86-64, -Xmx1g

24‘ IIIIIIIIIIIIIIIIIII

Load

20

16

12

GC invocations, #/sec

0‘ IIIIIIIIIIIIIIIIIII

0 10 20 30 40 50 60 70

time. sec
Serial =—— Shenandoah (default)

G1 Shenandoah (compact) ——

More frequent GC cycles also mean more CPU needed to deal with GC work:

spring-boot-petclinic, wrk2 http test, 1000 RPS, OpenJDK 11 x86-64, -Xmx1g

800 I—r | I I | 1rni I rrirrrrrnl rrrrrrnonia I frrrrrrra rrrirrrnrini I rrrrrrorni 1rri [I | I LI I B |

-Start Idle Load Idle GCO Idle -

600 - —

O\Q - -

=) A _
o

(&) - -

g 40 -
=

© Tl -

> o _
o

Y . -

200 -~ —

0 I:_.!_ 111 [| I L 1 U | | (I} U | L | [} |-|

0 10 20 30 40 50 60 70
time. sec
Serial =— Shenandoah (default)

G1 Shenandoah (compact) ——

While most of the lines are noisy here, we can clearly see "Shenandoah (compact)" taking quite a some additional time to work.
That is the price we have to pay to have the denser footprint. Or, in other words, this is the manifestation of throughput-
latency-footprint tradeoff. There are, of course, tunable settings to say how much we want to trade, and this experiment only
shows the difference between two rather polar defaults: prefer throughput and prefer footprint. Since Shenandoah is concurrent
GC, even performing effectively back-to-back GCs does not stall application all that much.

[dle

Same RSS chart as above, repeated for convenience:

spring-boot-petclinic, wrk2 http test, 1000 RPS, OpenJDK 11 x86-64, -Xmx1g

1600 EERERERREERERERERE
Idle
1200
m
=
- 800
95
400
0 IIIIIIIIIIIIIIIIIII
0 10 20 30 40 50 60 70
time, sec
Serial =—— Shenandoah (default)
G1 Shenandoah (compact) ——

When application comes idle, GCs may decide to return some resources. The obvious thing to do would be uncommitting
parts of the empty heap. This is rather simple to do if heap is already sliced in independent chunks, for example when you
have a regionalized collector like G1 or Shenandoah. Still, the GC has to decide if/when to do it.

Many OpenJDK GCs perform GC-related actions only in conjunction with the actual GC cycles. But an interesting thing happens.
Most Open]DK GCs are allocation-triggered, which means they start the cycle when a particular heap occupancy had been
reached. If application went into idle state abruptly, it means it also stopped allocating, so whatever occupancy level it is at right
now, would linger until something happens. It makes some sense for stop-the-world GCs, because we do not really want to start
long-ish GC pause just because we feel like it.

There is no particular need to hook up uncommit to the GC cycle to begin with. In the case of Shenandoah, there is an
asynchronous periodic uncommit, and we can see it in action as the first large drop in idle phase. For this experiment, the
uncommit delay was deliberately set at 5 seconds, and we can see it indeed happened after a few seconds in idle. This performed
uncommit on regions that were emptied the last GC cycle, and have not been allocated yet.

But, there is another significant part of the story: since application went to idle abruptly, there is some floating garbage that we
would like to collect. This provides the motivation for having a periodic GC that should knock out the lingering garbage
out. Periodic GC is responsible for the second big step down in idle phase. It frees up new regions for periodic uncommit to deal
with later.

If GC cycles were frequent enough already (see "Shenandoah (compact)"), the effect of all this is largerly irrelevant, as footprint is
already quite low, and nothing excessive had been committed on top.

Full GC

Same RSS chart as above, repeated for convenience:

spring-boot-petclinic, wrk2 http test, 1000 RPS, OpenJDK 11 x86-64, -Xmx1g

1600 TErrgrrrrprrem
GCO Idle -
1200 —
" -
E —
- 800 -
v

7 -
A -
S —
400 -—
0 [IIIIIIIIJ_-I

0 10 20 30 40 50 60 70

time, sec
Serial =— Shenandoah (default)
G1 Shenandoah (compact) ——

Again, doing periodic GCs with concurrent GC implementation is less intrusive to do: if load is back up when we are mid-GC-
cycle, nothing bad is going to happen. That is in contrast to STW GC, that would have to guess if performing a major GC cycle is a
good idea or not. In worst case, we would have to explicitly tell JVM to perform it, and at least G1 reacts to this request reliably.
Note how the footprint for most collectors is down to the same level after Full GC, and how periodic GC and uncommit got there
much earlier without user intervention.

Conclusion

Periodic GCs. Perfoming periodic GC cycles help to knock out lingering garbage. Concurrent GCs routinely perform periodic GC
cycles: Shenandoah and ZGC are known to do it. G1 is supposed to gain this feature in JDK 12 with JEP 346
(http://openjdk.java.net/jeps/346). Otherwise, one can employ the external or internal agent to call for GC periodically when time is
right, with the hard part of defining what is the right time. See, for example, Jelastic GC Agent

(https://docs.jelastic.com/garbage-collector-agent).

Heap uncommit. Many GCs already do heap uncommits when they think it is a good idea: Shenandoah does it asynchronously
even without the GC requests, G1 sure does it on explicit GC requests, pretty sure Serial and Parallel also do it in some conditions.
ZGC is going to do it (http://mail.openjdk.java.net/pipermail/zgc-dev/2018-October/000489.html) soon as well, let’s hope JDK 12. G1 is
supposed to deal with synchronicity by performing periodic GC cycles with JEP 346 (http://openjdk.java.net/jeps/346) in JDK 12. Of
course, there is a trade-off: committing memory back may take a while

(http://mail.openjdk java.net/pipermail/hotspot-gc-dev/2018-June/022206.html), SO practical implementations would impose some timeouts
before uncommits.

Footprint-targeted GCs. Many GCs provide flexible options to make GC cycles more frequent to optimize for footprint. Even
something like increasing the frequency of periodic GCs would help to knock the garbage out earlier. Some GCs may give you the
pre-canned configuration packages that instruct the implementation to make footprint-savvy choices, including configuring
more frequent/periodic GC cycles and uncommits, like Shenandoah’s "compact" mode.

http://openjdk.java.net/jeps/346
https://docs.jelastic.com/garbage-collector-agent
http://mail.openjdk.java.net/pipermail/zgc-dev/2018-October/000489.html
http://openjdk.java.net/jeps/346
http://mail.openjdk.java.net/pipermail/hotspot-gc-dev/2018-June/022206.html

Every time you see switching to some GC implementation made the footprint happy, do understand why and how it did so. This
would help you to clearly understand what you paid for it, and also whether you can achieve the same without any migration.

JVM Anatomy Quark #22: Safepoint Polls

Questions
e How does JVM stop the Java threads for stop-the-world?

e What are those weird test instructions in my hotloops? (https://stackoverflow.com/a/54055300/2613885)

e Why Java 11 suddenly makes empty methods slower? (https://stackoverflow.com/a/54010845/2613885)

All these questions have the same answer.

Theory

Suppose you have the managed runtime like JVM, and you need to stop the Java threads occasionally to run some runtime code.
For example, you want to do the stop-the-world GC. You can wait for all threads to eventually call into JVM, for example, ask for
allocation (usually, a TLAB (https://shipilev.net/jvm/anatomy-quarks/4-tlab-allocation/) refill), or enter some native method (where
transition to native would capture it), or do something else. But that is not guaranteed to happen! What if the thread is currently
running in busy-loop of some kind, never doing anything special?

Well, on most machines, stopping the running thread is actually simple: you can send it a signal, force processor interrupt, etc. to
make it stop what the thread is doing and transfer control to somewhere else. However, it usually not enough for the Java thread
to stop at arbitrary points, especially if you want the precise garbage collection. There, you want to know what is in the registers
and stack, in case those values are actually object references you need to deal with. Or, if you want to unbias the lock, you want
to have precise information about the state of the thread and acquired locks. Or, if you deoptimize the method, you really want
to do it from the safe location without losing already executed part of the code and/or temporary values.

Therefore, modern JVMs, like Hotspot, implement the cooperative scheme: threads ask every so often if they should transfer the
control to VM, at some known points in their lifetime, when their state is known. When all threads stop at those known points,
the VM is said to reach the safepoint. The pieces of code that check for safepoint requests are therefore known as safepoint polls.

The implementation needs to satisfy the interesting tradeoff: safepoint polls almost never fire, so they should be very efficient
when not triggered. Can we glimpse it in the experiments?

Practice

Consider this simple JMH benchmark:

JAVA
import org.openjdk.jmh.annotations.*;

import java.util.concurrent.TimeUnit;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(3)
@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Benchmark)
public class EmptyBench {

@Benchmark

public void emptyMethod() {

// This method is intentionally left blank.
}

You might think this benchmark measures the empty method, but in reality it measures the minimal infrastructure code that
services the benchmark: counts the iterations and waits for the iteration time to be over. Fortunately, that piece of code is rather
fast, and so it can be dissected in full with the help of -prof perfasm.

This is out-of-the-box Open]JDK 8u191:

https://stackoverflow.com/a/54055300/2613885
https://stackoverflow.com/a/54010845/2613885
https://shipilev.net/jvm/anatomy-quarks/4-tlab-allocation/

ASM

3.60% ~ ..a2: movzbl 0x94(%r8),%r10d ; load "isDone" field

0.63% | ..aa: add $0x1,%rbp ; iterations++;

32.82% | ..ae: test %eax,0x1765654c(%rip) ; global safepoint poll

58.14% | ..b4: test %ri10d,%r10d ; if !isDone, do the cycle again
L ...b7: je ...a2

The empty method got inlined, and everything evaporated out of it, only the infrastructure remains.

See that "global safepoint poll"? When safepoint is needed, JVM would arm the "polling page", 18] so any attempt to read that page
would trigger the segmentation fault (SEGV) (https://en.wikipedia.org/wiki/Segmentation_fault). When SEGV finally fires from this
safepoint poll, the control would be passed to any existing SEGV handlers first, and JVM has one ready! See, for example, how
JVM_handle_linux_signal does (http:/hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/os_cpu/linux_x86/o0s_linux_x86.cpp#1430) it
(http://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/os_cpu/linux_x86/os_linux_x86.cpp#1577).

The goal of all those tricks is to make the safepoint polls as cheap as possible, because they need to happen in many places, and
they almost always do not fire. For this reason, the test %eax, (addr) is used: it has no effects when safepoint poll is not
triggered.l'! It is also has very compact encoding, "only" 6 bytes on x86_64. The polling page address is fixed for a given JVM
process, so the code generated by JIT in that process can use RIP-relative addressing
(https://en.wikipedia.org/wiki/Addressing_mode#PC-relative_2): it says that the page is at given offset from the current instruction
pointer, saving the need to spend precious bytes encoding the absolute 8-byte address.

There is also normally a single polling page that handles all threads at once, so generated code does not have to disambiguate
which thread is currently running. But what if VM wants to stop individual threads? That is the question answered by JEP-312:
"Thread-Local Handshakes" (https://openjdk.java.net/jeps/312). It provides the VM capability to trigger the handshake poll for the
individual thread, which is currently implemented by assigning the individual polling page for each thread, and poll instruction
reading that page address from thread-local storage. 2011211

This is out-of-the-box OpenJDK 11.0.1:

ASM

0.31% ~ ..70: movzbl 0x94(%r9),%r10d ; load "isDone" field
0.19% | ..78: mov 0x108(%r15),%r11 ; reading the thread-local poll page addr
25.62% | ..7f: add $0x1,%rbp ; lterations++;
35.10% | ...83: test %eax,(%ri11) ; thread-local handshake poll
34.91% | ..86: test %r10d,%r10d ; if !isDone, do the cycle again
L ...89: je ...70

This is purely a runtime consideration, so this can be disabled with -XX:-ThreadLocalHandshakes , and the generated code
would then be the same as in 8u191. This explains why this benchmark performs differently on 8 and 11 (let us run it under -
prof perfnorm right away):

SHELL

Benchmark Mode Cnt Score Error Units

8u191

EmptyBench.test avgt 15 0.383 £+ 0.007 ns/op
EmptyBench.test:CPI avgt 3 0.203 + 0.014 #/op
EmptyBench.test:L1-dcache-load-misses avgt 3 =104 #/0p
EmptyBench.test:L1-dcache-loads avgt 3 2.009 + 0.291 #/0p
EmptyBench.test:cycles avgt 3 1.021 £+ 0.193 #/op
EmptyBench.test:instructions avgt 3 5.024 + 0.229 #/op

#11.0.1

EmptyBench.test avgt 15 0.590 + 0.023 ns/op ; +0.2 ns
EmptyBench.test:CPI avgt 3 0.260 £ 0.173 #/op
EmptyBench.test:L1-dcache-loads avgt 3 3.015 + 0.120 #/op ; +1 load
EmptyBench.test:L1-dcache-load-misses avgt 3 =104 #/0p
EmptyBench.test:cycles avgt 3 1.570 + 0.248 #/op ; +0.5 cycles
EmptyBench.test:instructions avgt 3 6.032 + 0.197 #/op ; +1 instruction
11.0.1, -XX:-ThreadLocalHandshakes

EmptyBench. test avgt 15 0.385 + 0.007 ns/op
EmptyBench.test:CPI avgt 3 0.205 + 0.027 #/op
EmptyBench.test:L1-dcache-loads avgt 3 2.012 + 0.122 #/op
EmptyBench.test:L1-dcache-load-misses avgt 3 =104 #/0p
EmptyBench.test:cycles avgt 3 1.030 + 0.079 #/op
EmptyBench.test:instructions avgt 3 5.031 + 0.299 #/op

https://en.wikipedia.org/wiki/Segmentation_fault
http://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/os_cpu/linux_x86/os_linux_x86.cpp#l430
http://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/os_cpu/linux_x86/os_linux_x86.cpp#l577
https://en.wikipedia.org/wiki/Addressing_mode#PC-relative_2
https://openjdk.java.net/jeps/312
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_18
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_19
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_20
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_21

So, thread-local handshakes add another L1-hitting load, which costs around half a cycle. This also gives us some ground to
estimate the cost of the safepoint poll itself: it is the L1-hitting load itself, and it probably takes another half a cycle.

Observations

Safepoint and handshake polls are interesting bits of trivia in managed runtime implementations. They are frequently visible on
hotpath in the generated code, and they sometimes affect the performance, especially in the tight loops. Yet, their existence is
necessary for runtime to implement important features like precise garbage collection, locking optimizations, deoptimization,
etc.

There are lots of safepoint-related optimizations which we shall discuss separately.

JVM Anatomy Quark #23: Compressed References

Questions
e What is the size of Java reference anyway?
e What are compressed oops/references?

e What are the problems around compressed references?

Naive Approach

Java specification is silent on the storage size for the data types. Even for primitives, it only mandates the ranges the primitive
types should definitely support (https:/docs.oracle.com/javase/specs/jls/se11/html/jls-4.html#jls-4.2.1) and their behavior of operations, but
not the actual storage size. This, for example, allows boolean fields to take 1, 2, 4 bytes in some implementations.

The question of Java references size is murkier, because specification is also silent about what the Java reference is, leaving this
decision to the JVM implementation. Most JVM implementations translate Java references to machine pointers, without
additional indirections, which simplifies the performance story.

For example, for the simple JMH benchmark like this:

JAVA
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Fork(3)
@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Benchmark)

public class CompressedRefs {

static class MyClass {
int x;
public MyClass(int x) { this.x = x; }
public int x() { return x; }

¥
private MyClass o = new MyClass(42);

@Benchmark
@CompilerControl(CompilerControl.Mode.DONT_INLINE)
public int access() {

return o.x();

}

...the access to the field would look like this: [22]

) ASM
LL[Hottest Region B ... e e e

level 4, org.openjdk.CompressedRefs::access, version 712 (35 bytes)
[Verified Entry Point]

n -
N -

1.10% ...b0: mov %eax,-0x14000(%rsp) ; prolog

6.82% ...b7: push %rbp ;

0.33% ...b8: sub $0x10,%rsp ;

1.20% ...bc: mov 0x10(%rsi),%r10 ; get field "o" to %r10
5.60% ...c0: mov 0x10(%r10) ,%eax ; get field "o.x" to %eax
7.21% ...c4: add $0x10,%rsp ; epilog

0.50% ...c8: pop %rbp

0.54% ...C9: mov 0x108(%r15),%r10 ; thread-local handshake
0.60% ...d0: test %eax, (%r10)

6.63% ...d3: retq ; return %eax

Notice the accesses to fields, both reading the reference field CompressedRefs.o and the primitive field MyClass.x are just
dereferencing the regular machine pointer. The field is at offset 16 from the beginning of the object, this is why we read at 0x10.
This can be verified by looking into the memory representation of the CompressedRefs instance. We would see the reference
field takes 8 bytes on 64-bit VM, and it is indeed at offset 16: 23]

https://docs.oracle.com/javase/specs/jls/se11/html/jls-4.html#jls-4.2.1
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_22
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_23

SHELL
$ java ... -jar ~/utils/jol-cli.jar internals -cp target/bench.jar org.openjdk.CompressedRefs

Running 64-bit HotSpot VM.

Objects are 8 bytes aligned.

Field sizes by type: 8, 1, 1, 2, 2, 4, 4, 8, 8 [bytes]
Array element sizes: 8, 1, 1, 2, 2, 4, 4, 8, 8 [bytes]

’ ’

Instantiated the sample instance via default constructor.

org.openjdk.CompressedRefs object internals:

OFFSET SIZE TYPE DESCRIPTION VALUE
0 4 (object header) 01 00 00 00
4 4 (object header) 00 00 00 00
8 4 (object header) f0 e8 1f 57
12 4 (object header) 34 7f 00 00
16 8 MyClass CompressedRefs.o (object)

Instance size: 24 bytes

Compressed References

But does that mean the size of Java reference is the same as the machine pointer width? Not necessarily. Java objects are usually
quite reference-heavy, and there is pressure for runtimes to employ the optimizations that make the references smaller. The
most ubiquitous trick is to compress the references: make their representation smaller than the machine pointer width. In fact,
the example above was executed with that optimization explicitly disabled.

Since Java runtime environment is in full control of internal representation, this can be done without changing any user
programs. It is possible to do in other environments, but you would need to handle the leakage through ABIs, etc, see for
example X32 ABI (https://en.wikipedia.org/wiki/X32_ABI).

In Hotspot, due to a historical accident, the internal names had leaked to the VM options list that control this optimization. In
Hotspot, the references to Java objects are called "ordinary object pointers”, or "oops”, which is why Hotspot VM options have
these weird names: -XX:+UseCompressedOops, -XX:+PrintCompressedOopsMode, -Xlog:gc+heap+coops . In this post we
would try to use the proper nomenclature, where possible.

"32-bit" Mode

On most heap sizes, the higher bits of 64-bit machine pointer are usually zero. On the heap that can be mapped over the first 4
GB of virtual memory, higher 32 bits are definitely zero. In that case, we can just use the lower 32-bit to store the reference in 32-
bit machine pointer. In Hotspot, this is called "32-bit" mode, as can be seen with logging:

SHELL
$ java -Xmx2g -Xlog:gc+heap+coops ...

[0.016s]1[info][gc,heap,coops] Heap address: 0x0000000080000000, size: 2048 MB, Compressed Oops mode: 32-bit

This whole shebang is obviously possible when heap size is less than 4 GB (or, 2 32 bytes). Technically, the heap start address
might be far away from zero address, and so the actual limit is lower than 4 GB. See the "Heap Address" in logging above. It says
that heap starts at 0x0000000080000000 mark, closer to 2 GB.

Graphically, it can be sketched like this:

https://en.wikipedia.org/wiki/X32_ABI

No

H* B H o H H e

I

[o]

I

heﬂp bage
& \L Jan J‘eap 46 400

-_—

ckcocke: ptr = cast<64> (ref)
encode: Ref= cast<32> (pir)

w, the reference field only takes 4 bytes and the instance size is down to 16 bytes: 24

java -Xmx1g -jar ~/utils/jol-cli.jar internals -cp target/bench.jar org.openjdk.CompressedRefs
Running 64-bit HotSpot VM.

Using compressed oop with 0-bit shift.

Using compressed klass with 3-bit shift.

Objects are 8 bytes aligned.
Field sizes by type: 4, 1, 1, 2, 2, 4, 4
Array element sizes: 4, 1, 1, 2, 2, 4, 4,

’ ’

, 8, 8 [bytes]
8, 8 [bytes]

nstantiated the sample instance via default constructor.

rg.openjdk.CompressedRefs object internals:

OFFSET SIZE TYPE DESCRIPTION VALUE
0 4 (object header) 01 00 00 00
4 4 (object header) 00 00 00 00
8 4 (object header) 85 fd 01 f8
12 4 MyClass CompressedRefs.o (object)

nstance size: 16 bytes

In generated code, the access looks like this:

a -

L[HOottest RegiON 2] . . ittt e i ettt it e

N -

level 4, org.openjdk.CompressedRefs::access, version 714 (35 bytes)
[Verified Entry Point]
0.87% ...c0: mov %eax,-0x14000(%rsp) ; prolog
6.90% ...c7: push %rbp
0.35% ...c8: sub $0x10,%rsp
1.74% ...CC: mov Oxc(%rsi),%r11d ; get field "o" to %ri1
5.86% ...d0: mov 0Oxc(%r11),%eax ; get field "o.x" to %eax
7.43% ...d4: add $0x10,%rsp ; epilog
0.08% ...d8: pop %rbp
0.54% ...d9: mov 0x108(%r15),%r10 . thread-local handshake
0.98% ...e0: test %eax, (%r10)
6.79% ...e3: retq ; return %eax

I TITOTIFFNIIY, l o e
/L LL L7 | Machime P.h-zg

C viRtual f‘""EH‘!)

SHELL

ASM

See, the access is still in the same form, that is because the hardware itself just accepts the 32-bit pointer and extends it to 64 bits

when doing the access. We have got this optimization for almost free.

"Zero-Based" Mode

But what if we cannot fit the untreated reference into 32 bits? There is a way out as well, and it exploits the fact that objects are
aligned: objects always start at some multiple of alignment. So, the lowest bits of untreated reference representation are always
zero. This opens up the way to use those bits for storing significant bits that did not fit into 32 bits. The easiest way to do that is to
bit-shift-right the reference bits, and this gives us 232shift) hytes of heap encodeable into 32 bits.

Graphically, it can be sketched like this:

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_24

@ 4' | 46 Jova beop 32@

| VNI TSNy | +
i "W TG CE G TTGHIFTEPFIS S | H;h'_-e_*w—c
: - cChing P
'{_1v_“ (vila‘;'blﬂ.r[mem)

Cleade : P—ﬁg: Ca84<6‘f>(ﬁef)<<g"'f"‘
encode ; Re:ﬁ = cos+ <327< P-ha >>£f1?ﬁ)

With default object alignment of 8 bytes, shift is 3 (23 = 8), therefore we can represent the references to 23° = 32 GB heap. Again,
the same problem with base heap address surfaces here and makes the actual limit a bit lower.

In Hotspot, this mode is called "zero based compressed oops", see for example:

. SHELL
$ java -Xmx20g -Xlog:gc+heap+coops ...

[0.010s][info][gc,heap,coops] Heap address: 0x0000000300000000, size: 20480 MB, Compressed Oops mode: Zero based, Oop
shift amount: 3

The access via the reference is now a bit more complicated:

: ASM
o o [[MOTEESTE REFIEN Slooooocoooon00000000000000000000000000000000600000000000

a -
N -

level 4, org.openjdk.CompressedRefs::access, version 715 (36 bytes)
[Verified Entry Point]
0.94% ...40: mov %eax, -0x14000(%rsp) ; prolog
7.43% ...47: push %rbp
0.52% ...48: sub $0x10,%rsp
1.26% ...4c: mov Oxc(%rsi),%r11d ; get field "o"
6.08% ...50: mov 0xc(%r12,%r11,8),%eax ; get field "o.x"
6.94% ...55: add $0x10,%rsp ; epilog
0.54% ...59: pop %rbp
0.27% ...5a: mov 0x108(%r15),%r10 ; thread-local handshake
0.57% ...61: test %eax, (%r10)
6.50% ...64: retq

Getting the field o.x involves executing mov 0xc(%r12,%r11,8),%eax : "Taketh the ref’rence from %r11, multiplyeth the
ref’rence by 8, addeth the heapeth base from %r12, and that wouldst be the objecteth that you can now readeth at offset 0xc ;
putteth that value into %eax , please". In other words, this instruction combines the decoding of the compressed reference with
the access through it, and it is done in one sway. In zero-based mode, %r12 is zero, but it is easier on code generator to emit the
access involving %r12 nevertheless. The fact that %r12 is zero in this mode can be used by code generator in other places too.

To simplify the internal implementation, Hotspot usually carries only uncompressed references in registers, and that is why the
access to field o isjust the plain access from this (thatisin %rsi) at offset Oxc.

"Non-Zero Based" Mode

But zero-based compressed references still rely on assumption that heap is mapped at lower addresses. If it is not, we can just
make heap base address non-zero for decoding. This would basically do the same thing as zero-based mode, but now heap base
would mean more and participate in actual encoding/decoding.

In Hotspot, this mode is called "Non-zero base" mode, and you can see it in logs like this: [25]

SHELL
$ java -Xmx20g -XX:HeapBaseMinAddress=100G -Xlog:gc+heap+coops

[0.015s][info][gc,heap,coops] Heap address: 0x0000001900400000, size: 20480 MB, Compressed Oops mode: Non-zero based:
0x0000001900000000, Oop shift amount: 3

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_25

Graphically, it can be sketched like this:

I'EQP Lase,

46 26 | Jave heap

2 \ " | VTS T TTTF NP — tc S
i _ LiF AV T T HIFSS .
| Macf-‘u;-ag

(virtual mem)

les Hhan g GLIERH)

checde 1R = (cast<64>(Ref)<< ghif4)+ base.
ende s Ref: cas$<32> ((F-I-R-l;ose) >‘>SH-}(4)

As we suspected earlier, the access would look the same as in zero-based mode:

g ASM
oo [ll@TEESTE REEILEN 11looo0o0000000000000000000000000000000000060600006000000600600

c2, level 4, org.openjdk.CompressedRefs::access, version 706 (36 bytes)
[Verified Entry Point]

0.08% ...50: mov %eax, -0x14000(%rsp) ; prolog
5.99% ...57: push %rbp
0.02% ...58: sub $0x10,%rsp
0.82% ...5c: mov Oxc(%rsi),%r11d ; get field "o"
5.14% ...60: mov 0xc(%r12,%r11,8),%eax ; get field "o.x"
28.05% ...65: add $0x10,%rsp ; epilog
...69: pop %rbp
0.02% ...6a: mov 0x108(%r15),%r10 ; thread-local handshake
0.63% ...71: test %eax, (%r10)
5.91% ...74: retq ; return %eax

See, the same thing. Why wouldn’t it be. The only hidden difference here is that %r12 is now carrying the non-zero heap base
value.

Limitations

The obvious limitation is the heap size. Once the heap size gets larger than the threshold under which compressed references are
working, a surprising thing happens: references suddenly become uncompressed and take twice as much memory. Depending
on how many references you have in the heap, you can have a significant increase in the perceived heap occupancy.

To illustrate that, let’s estimate how much heap is actually taken by allocating some objects, with the toy example like this:

JAVA
import java.util.stream.IntStream;

public class RandomAllocate {
static Object[] arr;

public static void main(String... args) {
int size = Integer.parselnt(args[0]);
arr = new Object[size];
IntStream.range(0, size).parallel().forEach(x -> arr[x] = new byte[(x % 20) + 11);
System.out.println("All done.");

It is much more convenient to run with Epsilon GC (https://openjdk.java.net/jeps/318), which would fail on heap exhaustion, rather
than trying to GC its way out. There is no point in GC-ing this example, because all objects are reachable. Epsilon would also print
heap occupancy stats for our convenience. 26!

https://openjdk.java.net/jeps/318
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_26

Let’s take some reasonable amount of small objects. 800M objects sounds enough? Run:

SHELL
$ java -XX:+UseEpsilonGC -Xlog:gc -Xlog:gc+heap+coops -Xmx31g RandomAllocate 800000000

[0.004s][info][gc] Using Epsilon

[0.004s][info][gc,heap,coops] Heap address: 0x0000001000001000, size: 31744 MB, Compressed Oops mode: Non-zero disjoint
base: 0x0000001000000000, Oop shift amount: 3

All done.

[2.380s][info]l[gc] Heap: 31744M reserved, 26322M (82.92%) committed, 26277M (82.78%) used

There, we took 26 GB to store those objects, good. Compressed references got enabled, so the references to those byte[] arrays
are smaller now. But let’s suppose our friends who admin the servers said to themselves: "Hey, we have a gigabyte or two we can
spare for our Java installation", and have bumped the old -Xmx31g to -Xmx33g. Then this happens:

SHELL
$ java -XX:+UseEpsilonGC -Xlog:gc -Xlog:gc+heap+coops -Xmx33g RandomAllocate 800000000

[0.004s][info][gc] Using Epsilon
Terminating due to java.lang.OutOfMemoryError: Java heap space

Oopsies. Compressed references got disabled, because heap size is too large. References became larger, and the dataset does not
fit anymore. I would say this again: the same dataset does not fit anymore just because we requested the excessively large heap
size, even though we don’t even use it.

If we try to figure out what is the minimum heap size required to fit the dataset after 32 GB, this would be the minimum:

SHELL
$ java -XX:+UseEpsilonGC -Xlog:gc -Xlog:gc+heap+coops -Xmx36g RandomAllocate 800000000

[0.004s][info][gc] Using Epsilon
All done.
[3.527s]1[info][gc] Heap: 36864M reserved, 35515M (96.34%) committed, 35439M (96.13%) used

See, we used to take ~26 GB for the dataset, now we are taking ~35 GB, almost 40% increase!

Conclusions

Compressed references is a nice optimization that keeps memory footprint at bay for reference-heavy workloads. The
improvements provided by this optimization can be very impressive. But so can be the surprises when this enabled-by-default
optimization stops working due to heap size and/or other environmental problems.

Knowing how this optimization works, when it breaks, and how to deal with breakages is important as heap sizes reach the
interesting thresholds of 4 GB and 32 GB. There are ways to alleviate this breakage by fiddling with object alignment, which we
would take on in "Object Alignment" quark (https:/shipilev.net/jvm/anatomy-quarks/24-object-alignment/).

But one lesson is clear: it is sometimes good to over-provision the heap for the application (makes GC life easier, for example),
but at the same time this over-provisioning should be done with care, and smaller heap may mean more free space available.

https://shipilev.net/jvm/anatomy-quarks/24-object-alignment/

JVM Anatomy Quark #24: Object Alignment

Questions
e Are there alignment constraints for Java objects?
e [have heard Java objects are 8-byte aligned, is that true?

e Can we fiddle with alignment to improve our compressed references story?

Theory

Many hardware implementations require the accesses to data to be aligned, that is make sure that all accesses of N byte width
are done on addresses that are integer multiples of N. Even when this is not specifically required for the plain accesses to data,
special operations (notably, atomic operations), usually have alignment constraints too.

For example, x86 is generally receptive to misaligned reads and writes, and misaligned CAS that spans two cache lines at once
still works, but it tanks the throughput performance. Other architectures would just plainly refuse to do such atomic operation,
yielding a SIGBUS or another hardware exception. x86 also does not guarantee access atomicity for values that span multiple
cache lines, which is a possibility when access is misaligned. Java specification, on the other hand, requires access atomicity for
most types, and definitely for all volatile accesses.

So, if we have the long field in Java object, and it takes 8 bytes in memory, we have to make sure it is aligned by 8 bytes for
performance reasons. Or even for correctness reasons, if that field is volatile . In a simple approach,?’! two things need to
happen for this to hold true: the field offset inside the object should be aligned by 8 bytes, and the object itself should be aligned
by 8 bytes. That is indeed what we shall see if we peek into java.lang.Long instance:[28]

SHELL

$ java -jar jol-cli.jar internals java.lang.Long

Running 64-bit HotSpot VM.

Using compressed oop with 3-bit shift.

Using compressed klass with 3-bit shift.

Objects are 8 bytes aligned.

Field sizes by type: 4, 1, 1, 2, 2, 4, 4, 8, 8 [bytes]
Array element sizes: 4, 1, 1, 2, 2, 4, 4, 8, 8 [bytes]

java.lang.Long object internals:

OFFSET SIZE TYPE DESCRIPTION VALUE
0 4 (object header) 01 00 00 00
4 4 (object header) 00 00 00 00
8 4 (object header) ce 21 00 f8
12 4 (alignment/padding gap)
16 8 long Long.value 0

Instance size: 24 bytes
Space losses: 4 bytes internal + 0 bytes external = 4 bytes total

Here, the value field itself is at offset 16 (it is multiple of 8), and the object is aligned by 8.

Even if there are no fields that require special treatment, there are still object headers that also need to be accessed atomically. It
is technically possible to align the majority of Java objects by 4 bytes, rather by 8 bytes, however the runtime work required to
pull that off is quite immense (https://bugs.openjdk.java.net/browse/JDK-8025677).

So, in Hotspot, the minimum object alignment is 8 bytes. Can it be larger, though? Sure it can, there is the VM option for that: -
XX:0bjectAlignmentInBytes . And it comes with two consequences, one negative and one positive.
Instance Sizes Get Large

Of course, once the alignment gets larger, it means that the average space wasted per-object would also increase. See, for
example, the object alignment increased to 16 and 128 bytes:

https://bugs.openjdk.java.net/browse/JDK-8025677
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_27
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_28

SHELL

$ java -XX:ObjectAlignmentInBytes=16 -jar jol-cli.jar internals java.lang.long

java.lang.Long object internals:
OFFSET SIZE

0
4
8
12
16
24

4

[S S S

TYPE DESCRIPTION VALUE
(object header) 01 00 00 00
(object header) 00 00 00 00
(object header) c8 10 01 00
(alignment/padding gap)

long Long.value 0

(loss due to the next object alignment)

Instance size: 32 bytes
Space losses: 4 bytes internal + 8 bytes external = 12 bytes total

SHELL

$ java -XX:ObjectAlignmentInBytes=128 -jar jol-cli.jar internals java.lang.Long

java.lang.Long object internals:

OFFSET
0

4

8

12

16

24

Instance size:

SIZE
4

4
4
4
8

104

TYPE DESCRIPTION VALUE
(object header) 01 00 00 00
(object header) 00 00 00 00
(object header) a8 24 01 00
(alignment/padding gap)

long Long.value 0
(loss due to the next object alignment)

128 bytes

Space losses: 4 bytes internal + 104 bytes external = 108 bytes total

Hell, 128 bytes per instance that only has 8 bytes of useful data seems excessive. Why would anyone do that?

Compressed References Threshold Get Shifted

(pun intended)

Remember this picture from the "Compressed References" quark (https://shipilev.net/jvm/anatomy-quarks/23-compressed-references/)?

6 Jova beap
Tl 7287722772 277 | e

N 4 226

I 777777 AT 7777 7777777777 | el g e
Chant Ff

(u i fual mem)

- Ve P 2(’52*8%?-ﬁ);?‘

Chcode Pﬁz = Cos+<6Y oref) « Sh+
encade Re:f = cos+ <32'>(P-Hz. >‘>£fqﬁﬁ)

It says that we can have compressed references enabled on heaps larger than 4 GB by shifting the reference by a few bits. The
length of that shift depends on how many lower bits in reference are zero. That is, how objects are aligned! With 8-byte
alignment by default, 3 lower bits are zero, we shift by 3, and we get 2 32* bytes = 32 GB addressable with compressed
references. And with 16-byte alignment, we have 229 bytes = 64 GB heap with compressed references!

Experiment

So, object alignment blows up instance sizes, which increases heap occupancy, but allows compressed references on larger
heaps, which decreases heap occupancy! Do these things cancel each other? Depends on the structure of the heap. We could use
the same test we had before, but let’s automate it a little.

Make the little test that tries to identify the minimum heap to accommodate the given number of objects, like this:

https://shipilev.net/jvm/anatomy-quarks/23-compressed-references/

import java.io.*;
import java.util.¥*;

public class CompressedOopsAllocate {
static final int MIN_HEAP 0 * 1024;

static final int MAX_HEAP = 100 * 1024;
static final int HEAP_INCREMENT = 128;

static Object[] arr;

public static void main(String... args) throws Exception {
if (args.length >= 1) {
int size = Integer.parselnt(args[0]);
arr = new Object[size];
IntStream.range(0, size).parallel().forEach(x -> arr[x] = new byte[(x % 20) + 1]);
return;

}

String[] opts = new String[]{
"-XX:-UseCompressedOops",
"-XX:0bjectAlignmentInBytes=16",
"-XX:0bjectAlignmentInBytes=32",
"-XX:0bjectAlignmentInBytes=64",

¥

int[] lastPasses = new int[opts.length];
int[] passes = new int[opts.length];
Arrays.fill(lastPasses, MIN_HEAP);

for (int size = 0; size < 3000; size += 30) {
for (int o = 0; o < opts.length; o++) {
passes[o] = 0;
for (int heap = lastPasses[o]; heap < MAX_HEAP; heap += HEAP_INCREMENT) {
if (tryWith(size * 1000 * 1000, heap, opts[o])) {
passes[o] = heap;
lastPasses[o] = heap;

break;
¥
+
ks
System.out.println(size + ", " + Arrays.toString(passes).replaceALL("[\\[\\11",""));
+

i
private static boolean tryWith(int size, int heap, String... opts) throws Exception {

List<String> command = new ArraylList<>();

command.add("java");
command.add("-XX:+UnlockExperimentalVMOptions");
command.add("-XX:+UseEpsilonGC");
command.add("-XX:+UseTransparentHugePages"); // faster this way
command.add("-XX:+AlwaysPreTouch"); // even faster this way
command.add("-Xmx" + heap + "m");

Arrays.stream(opts).filter(x -> !x.isEmpty()).forEach(command: :add);
command . add (CompressedOopsAllocate.class.getName());
command.add(Integer.toString(size));

Process p = new ProcessBuilder().command(command).start();
return p.waitFor() == 0;

Running this test on large machine that can go up to 100+ GB heap, would yield predictable results. Let us start with average
object sizes to set the narrative. Note these are average object sizes in that particular test, that allocates lots of small byte[]
arrays. Here:

Fitting lots of objects into Java heap

~N 0
N O

N
@)

(@)}
n

o0

!

S I N e
)
_

~

Average object size, bytes

o0

3-bit shift fails -bit shift fails

—_
(] @)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 220
of objects, M

mode == Default == Disabled CompRefs == With 16-byte align == With 32-byte align == With 64-byte align
Not surprisingly, increasing alignment does inflate the average object sizes: 16-byte and 32-byte alignments have managed to

increase the object size "just a little", while 64-byte alignment exploded the average considerably. Note that object alignment
basically tells the minimum object size, and once that minimum goes up, average also goes up.

As we seen in "Compressed References" quark (https:/shipilev.net/jvm/anatomy-quarks/23-compressed-references/), compressed
references would normally fail around 32 GB. But notice that higher alignments prolong this, and the higher the alignment,
the longer it takes to fail. For example, 16-byte alignment would have 4-bit shift in compressed references, and fail around 64
GB. 32-byte alignment would have 5-bit shift and fail around 128 GB.!*°! In this particular test, on some object counts, the object
size inflation due to higher alignment is balanced by lower footprint due to compressed references are active. Of course, when
compressed references get finally disabled, the alignment costs catch up.

It can be more aptly seen at "minimal heap size" graph:

Fitting lots of objects into Java heap

100

\

Minimal Java Heap, GB

10+

0 3-bit shift fails -bit shift fails

0 200 400 600 800 1000 1200 1400 1600 1800 2000 220
of objects, M

mode == Default == Disabled CompRefs == With 16-byte align == With 32-byte align == With 64-byte align
Here, we clearly see the 32 GB and 64 GB failure thresholds. Notice how 16-byte and 32-byte alignment took less heap in some

configurations, piggybacking on more efficient reference encoding. That improvement is not universal: when 8-byte alignment is
enough or when compressed references fail, higher alignments waste memory.

https://shipilev.net/jvm/anatomy-quarks/23-compressed-references/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_29

Conclusions

Object alignment is a funny thing to tinker with. While it inflates the object sizes considerably, it can also make the overall
footprint lower, once compressed references come into picture. Sometimes it makes sense to bump the alignment a little bit, to
reap the footprint benefits [sic!]. In many cases, however, this would degrade overall footprint. Careful study on the given
application and given dataset is required to figure out if bumping alignment pays off or not. It is a sharp tool, use it with care.

JVM Anatomy Quark #25: Implicit Null Checks

Question

Java specification says that NullPointerException would be thrown when we access the null object fields. Does this mean
the JVM has to always employ runtime checks for nullity?

Theory

In theory, (JIT) compiler can know that the object is not null and elide the runtime null check, for example when something is
constant (https://shipilev.net/jvm/anatomy-quarks/15-just-in-time-constants/):

. . JAVA
static class Holder { int x; }

static final Holder H = new Holder();

int m() {
return H.x; // H is known to be not null at JIT compilation time

¥

If that does not work, for example when the nullity cannot be inferred automatically, compilers can also employ dataflow
analysis to remove the successive null checks after first null check for the object was done. For example:

JAVA
int m(Holder h) {

int x1 = h.x; // null-check here
int x2 = h.x; // no need to null-check here again
return x1 + x2;

b

Those optimizations are very useful, but quite boring, and they don’t solve the need for null checks in all other cases.

Fortunately, there is even a smarter way to do this: let the user code access the object without the explicit check! Most of the
time, nothing bad is going to happen, as most object accesses do not ever see the null object. But we still need to handle the
corner case when the null access does happen. When it does, the JVM can intercept

(http://hg.openjdk. java.net/jdk/jdk/file/b9d1ce20dd4b/src/hotspot/os_cpu/linux_x86/0s_linux_x86.cpp#1486) the resulting SIGSEGV ("Signal:
Segmentation Fault"), look at the return address for that signal, and figure out where that access was made in the generated
code. Once it figures that bit out, it can then know where to dispatch the control to handle this case —in most cases, throwing
NullPointerException or branching somewhere.

This mechanism is known in Hotspot under the name "implicit null checks"

(http://hg.openjdk.java.net/jdk/jdk/file/b9d1ce20dd4b/src/hotspot/share/runtime/globals.hpp#11029). It was recently added to LLVM under the
similar name (https:/llvm.org/docs/FaultMaps.html), to cater for the same use case.

Can we see how it works in practice?

Practice

Consider this cunningly simple JMH benchmark:

https://shipilev.net/jvm/anatomy-quarks/15-just-in-time-constants/
http://hg.openjdk.java.net/jdk/jdk/file/b9d1ce20dd4b/src/hotspot/os_cpu/linux_x86/os_linux_x86.cpp#l486
http://hg.openjdk.java.net/jdk/jdk/file/b9d1ce20dd4b/src/hotspot/share/runtime/globals.hpp#l1029
https://llvm.org/docs/FaultMaps.html

import org.openjdk.jmh.annotations.*;
import java.util.concurrent.TimeUnit;

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(value = 3, jvmArgsAppend = {"-XX:LoopUnrollLimit=1"})
@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class ImplicitNP {

@Param({"false", "true"})
boolean blowup;

volatile Holder h;
int itCnt;

@Setup
public void setup() {
h = null;
if (blowup && ++itCnt == 3) { // blow it up on 3-rd iteration
for (int ¢ = 0; c < 10000; c++) {
try {
test();
} catch (NullPointerException npe) {
// swallow
}
}

System.out.print("Boom! ");

+
h = new Holder();
+

@CompilerControl(CompilerControl.Mode.DONT_INLINE)
@Benchmark
public int test() {

int sum = 0;

for (int ¢ = 0; c < 100; c++) {

sum += h.x;
+
return sum;

¥

static class Holder {
int x;

b

On the surface, this benchmark is simple: it performs the 100x integer addition.

Methodology-wise, this benchmark is cunning in several ways:

JAVA

1. Itis parametrized by blowup flag that would expose null objectto test() method at the 3-rd iteration when blowup =

true, and leave it alone otherwise.

2. Tt uses the looping in benchmark-unsafe manner. That is mitigated by asking Hotspot to not to unroll the loops with

LoopUnrollLimit .

3. It accesses the same object over and over again. A smart optimizer would be able to hoist the load of h outside the loop, and

then aggressively optimize. This is mitigated by declaring h as volatile : unless we are dealing with a God-like-smart

optimizer, this is enough to break hoisting.

4. Tt uses compiler hints to break inlining for test . This is not, strictly speaking, needed for this benchmark, but it is safety
measure. The reasoning goes as follows: the test relies on profiling information for test, and smarter compilers can use
caller-callee profiles to split the profile between the version called from setup(), and from the benchmark loop itself.

Out of the curiosity, with recent 8u232,13% it yields the following result:

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_30

SHELL
Benchmark (blowup) Mode Cnt Score Error Units

ImplicitNP.test false avgt 15 40.417 £ 0.030 ns/op
ImplicitNP.test true avgt 15 63.187 + 0.156 ns/op

+ +

Absolute numbers do not matter much here, the important bit is that one of the cases is much faster than the other one. The
blowup = false case is significantly faster here. If we drill down into why, we would probably start with characterizing it with
the help of -prof perfnorm, which can show the low-level machine counters for both tests:

SHELL

Benchmark (blowup) Mode Cnt Score Error Units
ImplicitNP.test false avgt 15 40.484 + 0.090 ns/op
ImplicitNP.test:L1-dcache-1loads false avgt 3 206.606 + 24.336 #/op
ImplicitNP.test:L1-dcache-stores false avgt 3 5.861 + 0.426 #/op
ImplicitNP.test:branches false avgt 3 102.972 + 13.679 #/op
ImplicitNP.test:cycles false avgt 3 141.252 + 22.330 #/op
ImplicitNP.test:instructions false avgt 3 521.998 + 87.292 #/op
ImplicitNP.test true avgt 15 63.254 + 0.047 ns/op
ImplicitNP.test:L1-dcache-loads true avgt 3 206.154 + 15.231 #/0p
ImplicitNP.test:L1-dcache-stores true avgt 3 4.971 + 0.677 #/op
ImplicitNP.test:branches true avgt 3 199.993 + 20.805 #/op ; +100 branches
ImplicitNP.test:cycles true avgt 3 221.388 + 13.126 #/op ; +80 cycles
ImplicitNP.test:instructions true avgt 3 714.439 + 64.476 #/op ; +190 insns

So, we are hunting some excess branches. Note we had the loop with 100 iterations, so there must be the excess branch per
iteration? Also, we have about 200 excess instructions, which makes sense as "branch" is really the test and jcc on x86_64.

Now that we have that hypothesis, let’s see the actual hot code for both cases, with the help of -prof perfasm.The highly edited
snippets are below.

First, blowup = false case:

ASM

0x...020: mov 0x10(%rsi),%r11d ; get field "h"

1.71% ~

9.19% | 0x...024: add 0xc(%r12,%r11,8),%eax ; sum += h.x
| ; implicit exception:
| ; dispatches to 0x...03e

59.60% | 0x...029: inc %r10d ; increment "c" and loop

0.02% | 0x...02c: cmp $0x64,%r10d
L 0x...030: jl 0x...d204020

4.57% 0x...032: add $0x10,%rsp

3.16% 0x...036: pop %rbp

3.37% 0x...037: test %eax,0x16a18fc3(%rip)

0x...03d: retq
0x...03e: mov $Oxfffffffe,%esi
0x...043: callg 0x00007f8aed0453e0 ; <uncommon trap>

Here, we can see a very tight loop, and the instruction at 0x..024 combines the compressed reference
(https://shipilev.net/jvm/anatomy-quarks/23-compressed-references) decoding of h, the access to h.x, and the implicit null check. We
do not pay with any additional instructions to check h for nullity.3!!

The implicit exception: dispatches to 0x..03e line is the part of VM output that says VM knows SEGV exception coming
from that instruction had actually failed null check. The JVM signal handler would then do its bidding and dispatch the control to
0x..03e , which would then go on to throwing the exception. [3%]

Of course, if null -s are frequent on that path, going via the signal handler every time is rather slow. For our current case, we
could have said that throwing the exception would still be heavy, but it runs into two logistical problem:s. First, even though
exceptions are sometimes slow (https://shipilev.net/blog/2014/exceptional-performance/), there is no reason to make them even slower if
we can avoid it. Second, we would like to deal with user-written null-checks using the same machinery, and users would not like
their simple if (h == null) { .. } else { .. } branches run dramatically worse depending on the nullity of h . Therefore, we
would like to use implicit null-checks only when the frequency of actual null -sis very low.

https://shipilev.net/jvm/anatomy-quarks/23-compressed-references
https://shipilev.net/blog/2014/exceptional-performance/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_31
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_32

Luckily, the JVM can compile the code knowing the runtime profile. That is, when JIT compiler decides whether to emit the
implicit null check, it can look into profile and see if the object was ever null.Moreover, even if it does emit the implicit null
check, it can recompile the code later when that optimistic assumption about null frequency is violated. blowup = true case
specifically violates that assumption by feeding null to our code. As the result, the JVM recompiles the whole thing into: (33!

11.36%
12.81%
0.02% r
17.23% |
25.07% |
8.70% |
.02% |
.31% |
.49% |
.72% |
|

N

NN WO

0x. .
0x. .
0x. .
0x. .
0x. .
0x. .
0x..
0x. .
0x. .
0x. .
0x. .
0x. .
0x. .
0x. .
0x. .
0x..

.bd1:
.bd5:
.bd8:
.bda:
.bdf:
.be2:
.beb6:
.be8:
.bec:
.bed:
.bf3:
.bf4:
.bfe:
.c02:
.c06:
.c07:

mov
test
je

add
inc
cmp

jl

add
pop
test
retq
movabs
mov
add
pop
impq

0x10(%rsi),%r11d
%r11d,%r11d

0x...bf4
0Oxc(%r12,%r11,8) ,%eax
%r10d

$0x64,%r10d

0x...bd1
$0x10,%rsp
%rbp

%eax,0x160e640d(%rip)

$0x7821044f8,%rsi
%r12d,0x10(%rsi)
$0x10,%rsp

%rbp
0x00007f887d1053a0

ASM

; get field "h"
; EXPLICIT NULL CHECK

;osum += h.x
; increment "c" and loop

; <preallocated NullPointerException>
; WTF

; throw_exception

Bam! There is the explicit null check in the generated code now! 4 Implicit null check turned itself into explicit one, without
user intervention.

You can see that in flight when looking into the full benchmark log:

H o o H W o R W HH*

JMH version:
VM version: JDK 1.8.0_232, OpenJDK 64-Bit Server VM, 25.232-b09
VM options: -XX:LoopUnrollLimit=1

Warmup: 5 iterations, 1 s each

Measurement: 5 iterations, 1 s each

Timeout: 10 min per iteration

Threads: 1 thread, will synchronize iterations
Benchmark mode: Average time, time/op
Benchmark: org.openjdk.ImplicitNP.test
Parameters: (blowup = true)

1.22

Run progress: 50.00% complete, ETA 00:00:30
Fork: 1 of 3

Warmup Iteration
Warmup Iteration
Warmup Iteration
Warmup Iteration

A wWN -

Warmup Iteration 5:

Iteration
Iteration
Iteration
Iteration
Iteration

1:

v b wN

63.188
63.208
63.128
63.137
63.143

40.900
40.698

Boom! 63.157 ns/op

63.158
63.130
ns/op
ns/op
ns/op
ns/op
ns/op

ns/op
ns/op

ns/op
ns/op

SHELL

// <--- recompilation happened here

See, everything was fine the first two iterations, then third iteration exposed null to the code, the JVM noticed that and
recompiled.®%! This gives us more or less flat performance model for null checks.

Other Trivia: Shenandoah GC

Overall, this is quite a useful technique, and so it is used even outside handling the original Java accesses to the heap. For
example, Shenandoah GC (https://wiki.openjdk.java.net/display/Shenandoah)'s load-reference-barrier
(https://developers.redhat.com/blog/2019/06/27/shenandoah-gc-in-jdk-13-part-1-load-reference-barriers/) needs to check if the object is in
collection set. If it is not, the barrier can shortcut, as the current object does not move.

In x86_64 code:

https://wiki.openjdk.java.net/display/Shenandoah
https://developers.redhat.com/blog/2019/06/27/shenandoah-gc-in-jdk-13-part-1-load-reference-barriers/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_33
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_34
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_35

ASM
................. LRB fastpath.......... i,

0x...067: testb $0x1,0x20(%r15)
r O0x...06c: jne 0x...086
L actual heap access
|~ 0x...06e: movl $0x2a,0xc(%r9)

B N LRB mid pathoviiiiiinnnnnnnn.
B N checking in-csetooiiinnnnn.
~| 0x...086: mov %r9,%r10

| 0x...089: shr $0x17,%r10 ; %r10 is biased region idx

| 0x...08d: movabs $0x7f60d00919f0,%r8 ; %r8 is biased cset bitmap

| 0x...097: cmpb $0x0, (%r8,%r10,1) ; <--- implicit check for null here!
L 0x...09c: je 0x...06e

The "collection set" bit is the property of the region, so there is a global "cset bitmap" that tells which regions are in collection set.
To figure out whether the object in in collection set, the code divides the object address by the region size, and then checks
against the region bitmap. The caveat here is that heap does not necessarily start at zero address. So, that division does not give
you the actual region index. Instead, it gives you the biased region index: something that has the constant offset, depending on
the actual heap base. To compensate for it, we can access the cset bitmap itself at its biased offset!

This makes us hit the region bitmap for every legitimate object address, except null, which would access something outside the
bitmap. But then we know which address null would hit, and so we can allocate and commit the zero page there
(http://hg.openjdk.java.net/jdk/jdk/rev/24eb7720919¢), then this check can pretend the answer for null is 0, or "false". And it would
do so without handling null -s with separate runtime checks, or involving any signal handling machinery.

Conclusion

Virtual memory provides some nifty tricks when dealing with memory accesses. Implicit null checks profitably exploit the fact
that most null checks never actually fire, and let the virtual memory subsystem notify us in case they do. Managed runtimes with
recompilation provide us with the way to exploit profile to make the correct guess about the shape of the check, or even
dynamically reshape the code when the assumption about null-check frequency was violated. In the end, the whole thing
becomes more or less invisible to the user, while providing substantial performance benefits.

http://hg.openjdk.java.net/jdk/jdk/rev/24eb7720919c

JVM Anatomy Quark #26: Identity Hash Code

Questions

What happens when we call Object.hashCode without the user-provided hash code? How does System.identityHashCode
work? Does it take the object address?

Theory

In Java, every object has equals and hashCode, even if users do not provide one. If user does not provide the override for
equals, then == (identity) comparison is used. If user does not provide the override for hashCode, then
System.identityHashCode is used to perform the hashcode computation.

The Javadoc (https://docs.oracle.com/javase/8/docs/api/java/lang/Object. html#hashCode-) for Object.hashCode says:

¢« The general contract of hashCode is:

e Whenever it is invoked on the same object more than once during an execution of a Java application,
the hashCode method must consistently return the same integer, provided no information used in equals
comparisons on the object is modified. This integer need not remain consistent from one execution of an
application to another execution of the same application.

e If two objects are equal according to the equals(Object) method, then calling the hashCode method on
each of the two objects must produce the same integer result.

e [t is not required that if two objects are unequal according to the equals(java.lang.Object) method, then
calling the hashCode method on each of the two objects must produce distinct integer results. However,
the programmer should be aware that producing distinct integer results for unequal objects may
improve the performance of hash tables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct
integers for distinct objects. (This is typically implemented by converting the internal address of the object

into an integer, but this implementation technique is not required by the Java™ programming language.)

Hash codes are supposed to have two properties: a) good distribution, meaning the hash codes for distinct objects are as distinct
as practically possible; b) idempotence, meaning having the same hash code for the objects that have the same key object
components. Note the latter implies that if object had not changed those key object components, its hash code should not change
as well.

It is a frequent source of bugs to change the object in such a way that its hashCode changes after it was used. For example,
adding the object to a HashMap as key, then changing its fields so that hashCode mutates as well would lead to surprising
behaviors: the object might not be found in the map at all, because internal implementation would look in the "wrong" bucket.
Likewise, it is a frequent source of performance anomalies to have badly distributed hash codes, for example returning a
constant value.

For user-specified hash code, both properties are achieved by computing it over the set of user-selected fields. With enough
variety of fields and field values, it would be well distributed, and by computing it over the unchanged (for example, final) fields
we get idempotence. In this case, we don’t need to store the hash code anywhere. Some hash code implementations may choose
to cache it in another field, but that is not required.

For identity hash code, there is no guarantee there are fields to compute the hash code from, and even if we have some, then it is
unknown how stable those fields actually are. Consider java.lang.Object that does not have fields: what’s its hash code? Two
allocated Object -s are pretty much the mirrors of each other: they have the same metadata, they have the same (that is, empty)
contents. The only distinct thing about them is their allocated address, but even then there are two troubles. First, addresses have
very low entropy, especially coming from a bump-ptr allocator like most Java GCs employ, so it is not well distributed. Second, GC
moves the objects, so address is not idempotent.[3¢! Returning a constant value is a no-go from performance standpoint.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_36

So, current implementations compute the identity hash code from the internal PRNG ("good distribution"), and store it for every
object ("idempotence").

To achieve this, Hotspot JVM has a few different styles of identity hashcode generators and it stores the computed identity
hashcode in the object header for stability. The choice of the identity hashcode generator has direct impact on the the
performance of hashCode itself and the hashCode users, notably java.util.HashMap . The implementation choice to store the
computed identity hashcode in the object header directly impacts the hashcode accuracy (how many bits we can store), and the
complex interaction with other users of the object headers.

There is a place in Hotspot codebase where the hashcode is generated
(https://github.com/openjdk/jdk/blob/4927ee426aedbeealf4119bac0a342c6d3576762/src/hotspot/share/runtime/synchronizer.cpp#L760-L798):

CPP
static inline intptr_t get_next_hash(Thread* current, oop obj) {

if (hashCode == 0) {
// Use os::random();

} else if (hashCode == 1) {
// Use address with some mangling

} else if (hashCode == 2) {
// Use constant 1

} else if (hashCode == 3) {
// Use global counter

} else if (hashCode == 4) {
// Use raw address

} else {
// Use thread-local PRNG

This setting it accessible as -XX:hashCode VM option.

The generated hashcode would be installed into object header in ObjectSynchronizer::FastHashCode later
(https://github.com/openjdk/jdk/blob/4927ee426aedbeea0f4119bac0a342c6d3576762/src/hotspot/share/runtime/synchronizer.cpp#L.800-L907), and
reused on next hash code requests.

Can we see how it works in practice?

Hashcode Storage

We can look into the identity hash code storage with JOL (https://github.com/openjdk/jol). In fact, there is a

JOLSample 15 IdentityHashCode
(https://github.com/openjdk/jol/blob/5d72f262h215a05cd66d71c06a0e38ac437490a0/jol-

samples/src/main/java/org/openjdk/jol/samples/JOLSample_15_IdentityHashCode.java)
sample that already captures what we want:

SHELL
$ java -cp jol-samples/target/jol-samples.jar org.openjdk.jol.samples.JOLSample_15_IdentityHashCode

**%* Fresh object
org.openjdk.jol.samples.JOLSample_15_IdentityHashCode$A object internals:
OFF SZ DESCRIPTION VALUE
0 8 (object header: mark) 0x0000000000000001 (non-biasable; age: 0)
8 4 (object header: class) 0x00cc4000
12 4 (object alignment gap)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

hashCode: 4e9ba398

**%%* After identityHashCode()
org.openjdk.jol.samples.JOLSample_15_IdentityHashCode$A object internals:
OFF SZ DESCRIPTION VALUE
0 8 (object header: mark) 0x0000004e9ba39801 (hash: 0x4e9ba398; age: 0)
8 4 (object header: class) 0x00cc4000
12 4 (object alignment gap)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

https://github.com/openjdk/jdk/blob/4927ee426aedbeea0f4119bac0a342c6d3576762/src/hotspot/share/runtime/synchronizer.cpp#L760-L798
https://github.com/openjdk/jdk/blob/4927ee426aedbeea0f4119bac0a342c6d3576762/src/hotspot/share/runtime/synchronizer.cpp#L800-L907
https://github.com/openjdk/jol
https://github.com/openjdk/jol/blob/5d72f262b215a05cd66d71c06a0e38ac437490a0/jol-samples/src/main/java/org/openjdk/jol/samples/JOLSample_15_IdentityHashCode.java

Here, the internal generator figured out the hashcode for this objectis 4e9ba398, and it recorded it as such in the object header.
Every subsequent call for identity hashcode would now reuse this value.

Hashcode Generators Randomness

In order to estimate the randomness of identity hash code generators, we can use the test like this:

public class HashCodeValues { e
static long sink;
public static void main(String... args) {
for (int t = 0; t < 100000; t++) {
for (int ¢ = 0; c < 1000; c++) {
sink = new Object().hashCode();
b
System.out.println(new Object().hashCode());
+
}
t

The goal for this test is to print the identity hash codes for consequtive objects. It comes with the demonstration problem: some
generators are distributed in appalingly bad way, so on large graph scales they would be indistinguishable from each other.

Therefore, the test skips printing the hashcode for the majority of intermediate objects, while still (awkwardly) making sure the
hashcode is computed.

The heatmap of hash code values would be something like this:

Style 0: osz:random() PRNG Style 1: STW Address Style 2: Constant 1

E D E e E e
i | |
-1& 1 1
0000 ! 100000 0000 100000
n n n
Style 3: Global Counter Style 4: Address Style 5: MT PRNG
1e 1 1e
E e g De g
g 2 2
-1e 1 1
1 R 100000 oL 1
n n n

Note a few things here:

1. Both PRNGs have the apparent value domain of nearly half of all possible hashcode values. Only the "upper" half is present
in values, because only the first 31 bits

(https://github.com/openjdk/jdk/blob/edff55607b9bc47bcla5d9de7ad 1a5d622be9736/src/hotspot/share/oops/markWord. hpp#1.103) of identity
hash code is stored in the header in 64-bit JVMs. 37]

https://github.com/openjdk/jdk/blob/edff55607b9bc47bc1a5d9de7ad1a5d622be9736/src/hotspot/share/oops/markWord.hpp#L103
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_37

2. The entropy of object addresses is very low. This is due to linear nature of (T)LAB allocations

(https://shipilev.net/jvm/anatomy-quarks/4-tlab-allocation/): the temporaly-adjacent objects would have the very similar addresses.
Indeed, this is why generating the hashcode from the object address is a bad idea!

3. Global counters are inconveniently distributed. Thir value domain for global counter is only the number of objects we have
ever computed the hashcode for.

4. Not surprisingly, constant hashcodes exhibit apallingly bad distribution.

The frequently overlooked bit for both address-based and global counter hashcodes is that — while they can be more distinct
than PRNGs (which additionally suffer from birthday paradoxes) —they are very well correlated bit-wise, which runs into the
risk of getting a sub-hash collision once you select the non-lower-bit subruns from the hash code. Additionally, regular hashcodes
like the global counter ones perform oddly when we deal with elements in a regular pattern, for example, retaining every second
object in the hash table quickly leads to having the elements with only odd/even hashcodes, which underutilizes the hash tables
doing e.g. hashcode % size bucket placement.

Hashcode Generators Performance

It might be fun to see what performance you can get from these generators. In a simple JMH benchmark like this, you have more
or less predictable results:

JAVA
@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(3)
@Threads(Threads.MAX)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@BenchmarkMode (Mode .AverageTime)
@State(Scope.Benchmark)
public class IdentityHashCode {
Object o = new Object();

@Benchmark

public void cold(Blackhole bh) {
Object lo = new Object();
bh.consume(lo);
bh.consume(lo.hashCode());

+

@Benchmark

public void warm(Blackhole bh) {
Object lo = o;
bh.consume(lo); // for symmetry
bh.consume(lo.hashCode());

On a small ultrabook with latest JDK 17 EA, it would yield:

https://shipilev.net/jvm/anatomy-quarks/4-tlab-allocation/

SHELL
Benchmark Mode Cnt Score Error Units

Style 0: os::random() PRNG

IdentityHashCode.cold avgt 15 400.703 + 12.470 ns/op

+ I+

IdentityHashCode.warm avgt 15 5.051 0.064 ns/op
Style 1: STW Address

IdentityHashCode.cold avgt 15 86.180 + 1.854 ns/op
IdentityHashCode.warm avgt 15 5.109 + 0.074 ns/op
Style 2: Constant 1

IdentityHashCode.cold avgt 15 83.195 + 2.034 ns/op
IdentityHashCode.warm avgt 15 5.045 + 0.060 ns/op
Style 3: Global Counter

IdentityHashCode.cold avgt 15 124.748 + 0.946 ns/op
IdentityHashCode.warm avgt 15 5.069 + 0.079 ns/op
Style 4: Address

IdentityHashCode.cold avgt 15 86.232 + 2.984 ns/op
IdentityHashCode.warm avgt 15 5.066 + 0.058 ns/op
Style 5: MT PRNG

IdentityHashCode.cold avgt 15 90.809 + 0.792 ns/op
IdentityHashCode.warm avgt 15 5.087 + 0.077 ns/op

Note a few things:
1. The warm variants perform the same, regardless of the generator used. This makes sense, as that path only picks up already
stored identity hash code.

2. The majority of the cold costis going to VM for hash code calculation. Even the most basic generator that returns a constant
1 costs quite a lot.

3. Other generators snowball with their own effects. Notably, os::random() PRNG does the atomic updated to the PRNG state,
and thus suffers from the major scalability problem.
Conclusion

The choice of identity hash code generator is heavily implementation specific. The generator should be both well-distributed and
highly scalable. That is why modern Hotspot VMs default to hashCode=5, the multi-threaded PRNGs. 38!

There is no address computation involved in identity hashcode calculation at all. That is one of the reasons why the confusing
mention of address computation was finally removed from the Javadoc. 3

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_38
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_39

JVM Anatomy Quark #27: Compiler Blackholes

Questions

How does JMH avoids dead-code elimination for nano-benchmarks? Is there an implicit or explicit compiler support?

Theory
Optimizing compilers are good at optimizing simple stuff. For example, if there is a computation that is not observable by

anyone, it can be deemed "dead code" and eliminated.

It is usually a good thing, until you run benchmarks. There, you want the computation, but you don’t need the result. In essence,
you observe the "resources" taken by the benchmark, but there is no easy way to argue this with a compiler.

So a benchmark like this:

. JAVA
int x, y;

@Benchmark
public void test_dead() {

intr =x +y;

¥

...would be routinely compiled like this:!0!

ASM

1.72% » ...370: movzbl 0x94(%r9),%r10d ; load $isDone
2.06% | ...378: mov 0x348(%r15),%r11 ; safepoint poll, part 1
27.91% | ...37f: add $0x1,%rbp ; ops++;
28.56% | ...383: test %eax,(%r11) ; safepoint poll, part 2
33.43% | ...386: test %r10d,%r10d ; are we done? spin back if not.
L ...389: je ...370

That is, only the benchmark infrastructure remains, with no actual x + y in sight. That code was dead, and it was eliminated.

Pure Java Blackholes

Since forever, JMH provides the way to avoid dead-code elimination by accepting the result
(https://github.com/openjdk/jmh/blob/6696c744003fd3920c4848d450fb3ed1c83c2239/jmh-
samples/src/main/java/org/openjdk/jmh/samples//MHSample_08 DeadCode.java)

from the benchmark. Under the hood, it is done by feeding that result into a Blackhole, that can also be used directly
(https://github.com/openjdk/jmh/blob/6696¢744003fd3920c4848d450fb3ed1c83c2239/jmh-
samples/src/main/java/org/openjdk/jmh/samples//MHSample_09_Blackholes.java)

in some cases.

In short, the Blackhole has to achieve a single side effect on the incoming argument: pretend it is used. The Blackhole

implementation notes
(https://github.com/openjdk/jmh/blob/6696¢744003fd3920c4848d450fb3ed1c83c2239/jmh-

core/src/main/java/org/openjdk/jmh/infra/Blackhole.java#L153-L252)
describe what the Blackhole implementor has to deal with when trying to cooperate with compiler. Implementing it efficiently is
an fine exercise in near-JVM engineering.

Anyhow, all that mess is hidden from JMH users, so they can just do:

. JAVA
int x, vy,

@Benchmark
public int test_return() {
return x + vy,

¥

If you look at the generated code, though, you would see that both the computation and the Blackhole code is there:

https://github.com/openjdk/jmh/blob/6696c744003fd3920c4848d450fb3ed1c83c2239/jmh-samples/src/main/java/org/openjdk/jmh/samples/JMHSample_08_DeadCode.java
https://github.com/openjdk/jmh/blob/6696c744003fd3920c4848d450fb3ed1c83c2239/jmh-samples/src/main/java/org/openjdk/jmh/samples/JMHSample_09_Blackholes.java
https://github.com/openjdk/jmh/blob/6696c744003fd3920c4848d450fb3ed1c83c2239/jmh-core/src/main/java/org/openjdk/jmh/infra/Blackhole.java#L153-L252
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_40

. ASM
main loop:

2.09% » ...e32: mov 0x40(%rsp),%r10 ; load $this

7.46% | ...e37: mov 0x10(%r10) ,%edx ; load $this.x

0.64% | ...e3b: add 0xc(%r10) ,%edx ; add $this.y

2.11% | ...e3f: mov 0x38(%rsp),%rsi ; call Blackhole.consume

1.74% | ...e44: datal6 xchg %ax,%ax

6.52% | ...e47: callgq ...a80

18.37% | ...edc: mov (%rsp),%r10

1.50% | ...e50: movzbl 0x94(%r10),%r11d ; load $isDone

2.85% | ...e58: mov 0x348(%r15),%r10 ; safepoint poll, part 1

6.74% | ...e5f: add $0x1,%rbp . ops++

0.62% | ...e63: test %eax,(%r10) ; safepoint poll, part 2

0.66% | ...e66: test %r11d,%r11d ; are we done? spin back if not.
L

..e69: je ...e32

Blackhole.consume:

2.34% ...040: mov %eax,-0x14000(%rsp) ; too
9.14% ...047: push %rbp ; lazy
0.64% ...048: sub $0x20,%rsp ; to
3.38% ...04c: mov %edx,%r11d ; cross-reference
6.66% ...04f: xor 0xb0(%rsi),%r11d ; this
0.68% ...056: mov %edx ,%r8d ; with
1.76% ...059: xor 0xb8(%rsi),%r8d ; the
1.62% ...060: cmp %r8d,%r11d ; actual
r...063: je ...078 ; Blackhole
7.22% | ...065: add $0x20,%rsp ;. code
0.35% | ...069: pop %rbp
2.01% | ...06a: cmp 0x340(%r15),%rsp
| ...071: ja ...094
8.53% | ...077: retq
v ...078: mov %rsi,%rbp

Not surprisingly, the Blackhole costs dominate such a tiny benchmark. With -prof perfnorm, we can see how bad it is:

SHELL

Benchmark Mode Cnt Score Error Units
XplusY.test_return avgt 25 3.288 £ 0.032 ns/op
XplusY.test_return:L1-dcache-loads avgt 5 13.092 + 0.487 #/op
XplusY.test_return:L1-dcache-stores avgt 5 3.031 + 0.076 #/op
XplusY.test_return:branches avgt 5 5.031 + 0.089 #/op
XplusY.test_return:cycles avgt 5 8.781 £ 0.351 #/op
XplusY.test_return:instructions avgt 5 27.162 £ 0.489 #/op

That is, our "payload" is only 2 instructions, yet the whole benchmark takes another 25 instructions on top of them! Yes, modern
CPUs can execute that whole bunch of instructions in about 9 cycles here, but it is still too much work. To add insult to injury, the
calling code and related stack management introduced stores.

The benchmark itself takes about 3.2 ns/op, which puts a lower limit on the effects we can reliably measure.

Compiler Blackholes

Luckily, we can ask a more direct cooperation from the compiler, with the use of compiler blackholes. Those are implemented in
Open]DK 17 with JDK-8259316 (https://bugs.openjdk.java.net/browse/JDK-8259316), with the plan
(https://mail.openjdk.java.net/pipermail/jdk-dev/2021-March/005239.html) to backport it to 11u as well. Compiler blackholes are
instructing the compilers to carry all arguments through the optimization phases, and then finally drop them when emitting the
generated code. Then, as long as hardware itself does not provide surprises to us, we should be good. 11!

They are supposed to work transparently for JMH users, but since the whole thing is experimental, at this time JMH users are
required to opt-in to compiler blackholes with -Djmh.blackhole.mode=COMPILER and then check the generated code for
correctness.4?] Indeed, using compiler blackholes with our benchmark, we can see that the computation is still there, and there
isno Blackhole call anymore!

https://bugs.openjdk.java.net/browse/JDK-8259316
https://mail.openjdk.java.net/pipermail/jdk-dev/2021-March/005239.html
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_41
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_42

SHELL

8.95% » ...c00: mov 0x10(%r11),%r10d ; load $this.x
0.36% | ..c04: add 0xc(%r11),%r10d ; add $this.y
| ; (AND COMPILER BLACKHOLE IT)
0.94% | ...c08: movzbl 0x94(%r14),%r8d ; load $isDone
26.76% | ...c10: mov 0x348(%r15),%r10 ; safepoint poll, part 1
8.42% | ...c17: add $0x1,%rbp ; ops++
0.43% | ..Cclb: test %eax, (%r10) ; safepoint poll, part 2
46.96% | ...Cle: test %r8d,%r8d ; are we done? spin back if not.
0.02% b ...c21: je ...c00

You cannot even see the blackhole code anywhere, except in extended disassembly annotation, but its effect is there: the
computation is preserved. -prof perfnorm is also happier:

SHELL

Benchmark Mode Cnt Score Error Units
XplusY.test_return avgt 25 0.963 + 0.042 ns/op
XplusY.test_return:L1-dcache-loads avgt 5 5.029 + 0.170 #/op
XplusY.test_return:L1-dcache-stores avgt 5 0.001 + 0.002 #/op
XplusY.test_return:branches avgt 5 1.006 + 0.019 #/op
XplusY.test_return:cycles avgt 5 2.569 £+ 0.108 #/op
XplusY.test_return:instructions avgt 5 8.043 + 0.182 #/op

No stores anymore, there are only 6 additional instructions that carry the infrastructure. The whole benchmark is able to
succeed in less than 3 cycles and less than 1 ns, and that involves 5 L1 accesses, 3 of which are infrastructural ones. 431

This makes explicit Blackhole uses more convenient too, for example when doing loops:

JAVA
@wWarmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(1)

@BenchmarkMode (Mode .AverageTime)
@OoutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

public class CPI_Floor {

@Param({"1000000"})
private int count;

@Benchmark
public void test(Blackhole bh) {
for (int ¢ = 0; c < count; c += 10000) {
for (int k = 0; k < 10000; k++) {
int v = k + k + k;
bh.consume(v);

On TR 3970X, this hits the CPI floor or ~0.16 clks/insn or IPC ceiling of ~6 insn/clk! In fact, it appears that the whole inner loop
over "k" executes in exactly one cycle!

SHELL

Benchmark (count) Mode Score Error Units
CPI_Floor.test 1000000 avgt 273422.337 + 12722.427 ns/op
CPI_Floor.test:CPI 1000000 avgt 0.169 clks/insn
CPI_Floor.test:IPC 1000000 avgt 5.907 insns/clk
CPI_Floor.test:branches 1000000 avgt 1003135.103 #/0p
CPI_Floor.test:cycles 1000000 avgt 1022821.963 #/0p
CPI_Floor.test:instructions 1000000 avgt 6042142.469 #/0p
Conclusion

The compiler blackholes are great for low-level performance investigations. Try to use them, check they do what you want, show
the success and failure stories, and hope all this would culminate with a new default Blackhole modes in JMH.

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_43

JVM Anatomy Quark #28: Frequency-Based Code Layout

Questions

Do JVMs perform profile-guided optimizations? Do JVMs profile branch frequency? Do JVMs use branch frequency information
for anything?

Theory

Among other things that Java VMs bring to the ecosystem, one of the good features is always on profile-guided optimization. To
understand how that works, consider that in a modern JVM, Java code is executed with several engines: the interpreter, the
baseline compiler (in Hotspot, C1), the optimized compiler (in Hotspot, C2). As Java code becomes more and more hot in Hotspot,
it is moving gradually from interpreter to C1, then to C2. That means the prior stages can perform the online profiling of the
code, and present that data to the higher stages in compilation.

A notable piece of the useful profiling data is the branch frequency counters. The branches are relatively non-frequent in the
code, and the counter itself usually needs to just record the number of times the branch was taken/skipped. This means the
profiling data is not overwhelming to record.

Then, a smarter compiler can use the branch frequency data to do many things, most notably, lay out the generated code so that
most often taken path is straight-forward. Yes, CPU branch predictors can alleviate some of the pain without frequency-based
layouts, but straight-forward code is still better.

Can we see this in practice?

Practice

Consider this JMH benchmark:44!

JAVA
@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(1)
@State(Scope.Benchmark)
@BenchmarkMode (Mode .AverageTime)
@OoutputTimeUnit(TimeUnit.NANOSECONDS)
public class BranchFrequency {

@Benchmark

public void mostlyFalse() {

for (int ¢ = 0; c < 9; c++) {

doCall(false);
+
doCall(true);
+
@Benchmark

public void mostlyTrue() {
for (int ¢ = 0; c < 9; c++) {
doCall(true);
+
doCall(false);
}

@CompilerControl(CompilerControl.Mode.DONT_INLINE)
public int doCall(boolean condition) {
if (condition) {
return 1;
} else {
return 2;

j

In either test, we take either one or another branch 90% of the time.

C1 compiler does not do frequency-based code layout, so we can expect it perform a bit differently. Indeed, it does! Look at -
prof perfnorm data with -XX:TieredStopAtLevel=1 on my i5-4210U:

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnotedef_44

SHELL
Benchmark Mode Cnt Score Error Units

BranchFrequency.mostlyFalse avgt 15 30.510 + 0.212 ns/op
BranchFrequency.mostlyFalse:L1-dcache-loads avgt 3 74.572 % 13.337 #/op
BranchFrequency.mostlyFalse:L1-dcache-stores avgt 3 40.366 =+ 1.994 #/op
BranchFrequency.mostlyFalse:branch-misses avgt 3 0.004 + 0.042 #/op
BranchFrequency.mostlyFalse:branches avgt 3 52.509 + 7.670 #/op
BranchFrequency.mostlyFalse:cycles avgt 3 82.643 + 14.422 #/op
BranchFrequency.mostlyFalse:instructions avgt 3 240.178 + 32.612 #/op
BranchFrequency.mostlyTrue avgt 15 27.426 + 0.066 ns/op
BranchFrequency.mostlyTrue:L1-dcache-loads avgt 3 74.701 + 6.478 #/op
BranchFrequency.mostlyTrue:L1-dcache-stores avgt 3 40.105 £ 3.923 #/op
BranchFrequency.mostlyTrue:branch-misses avgt 3 0.001 + 0.002 #/op
BranchFrequency.mostlyTrue:branches avgt 3 52.411 = 4.591 #/op
BranchFrequency.mostlyTrue:cycles avgt 3 73.837 + 7.356 #/op
BranchFrequency.mostlyTrue:instructions avgt 3 239.375 + 27.798 #/op

We are running roughly the same amount of instructions, L1 accesses, branches, etc. Yet the mostlyFalse case is slower for
about 3 ns. If we look into disasembly, then sure enough the code layout is static for doCall method, with true branch laid out
first:

SHELL
C1, mostlyTrue

2.57% ...44c: cmp $0x0,%edx ; test $condition
r...44f: je ...46d
2.71% | ...455: mov $0x1,%eax ; if true, return 0x1
5.40% | ...45a: add $0x30,%rsp
0.84% | ...45e: pop %rbp
1.73% | ...45f: cmp 0x340(%r15),%rsp
| ...466: ja ...485
8.85% | ...46c: retq
0.31% ~ ...46d: mov $0x2 ,%eax ; if false, return 0x2
0.29% ...472: add $0x30,%rsp
0.72% ...476: pop %rbp
0.06% ...477: cmp 0x340(%r15),%rsp
...47e: ja ...49b
0.45% ...484: retq

C1, mostlyFalse

2.76% ...74c: cmp $0x0, %edx ; test $condition
r...74f: je ...76d
0.22% | ...755: mov $0x1,%eax ; if true, return O0x1
0.06% | ...75a: add $0x30,%rsp
0.96% | ...75e: pop %rbp
0.06% | ...75f: cmp 0x340(%r15),%rsp
| ...766: ja ...785
0.20% | ...76c: retq
2.46% ~ ...76d: mov $0x2, %eax ; if false, return 0x2
7.01% ...772: add $0x30,%rsp
0.43% ...776: pop %rbp
0.98% ... 777: cmp 0x340(%r15) ,%rsp
...77e: ja ...79%
8.86% ...784: retq

Soin mostlyTrue case, we fall-through the branch and exit, while on mostlyFalse case we have to take a jump and execute
from another place.

If we run with C2 (either default mode, or specifically -XX:-TieredCompilation), which does frequency-based layouts, then we
would see the performance and counters are roughly the same in both cases:

Benchmark Mode Cnt Score Error Units

BranchFrequency.mostlyFalse avgt 15 24.840 + 0.027 ns/op
BranchFrequency.mostlyFalse:L1-dcache-loads avgt 3 61.040 + 2.702 #/op
BranchFrequency.mostlyFalse:L1-dcache-stores avgt 3 38.022 + 0.276 #/op
BranchFrequency.mostlyFalse:branch-misses avgt 3 0.002 + 0.036 #/op
BranchFrequency.mostlyFalse:branches avgt 3 52.012 + 4.265 #/op
BranchFrequency.mostlyFalse:cycles avgt 3 66.616 £+ 1.398 #/op
BranchFrequency.mostlyFalse:instructions avgt 3 212.290 + 13.588 #/op
BranchFrequency.mostlyTrue avgt 15 24.829 + 0.043 ns/op
BranchFrequency.mostlyTrue:L1-dcache-loads avgt 3 61.127 + 4.135 #/op
BranchFrequency.mostlyTrue:L1-dcache-stores avgt 3 38.072 £ 3.190 #/op
BranchFrequency.mostlyTrue:branch-misses avgt 3 0.002 + 0.027 #/op
BranchFrequency.mostlyTrue:branches avgt 3 52.153 =+ 4.914 #/op
BranchFrequency.mostlyTrue:cycles avgt 3 66.664 + 3.982 #/op
BranchFrequency.mostlyTrue:instructions avgt 3 212.572 + 10.962 #/op

The disassembly would reveal an interesting fact: in either case, the most frequent branch is laid out first!

C2, mostlyTrue

1.49% ...cac: test %edx , %edx ; check $condition
r ...cae: je ...cc8
1.05% | ...cb0: mov $0x1,%eax ; if true, return 0x1
1.45% |~ ...cb5: add $0x10,%rsp
11.09% || ...cb9: pop %rbp
12.00% || ...cba: cmp 0x340(%r15),%rsp
|| ...cc1: ja ...ccf
1.55% || ...cc7: retq
0.04% »| ...CCc8: mov $0x2 ,%eax ; if false, return 0x2
L ...ccd: jmp ...cbs

C2, mostlyFalse

4.85% ...32c: test %edx , %edx ; check $condition
r ...32e: jne ...348
1.10% | ...330: mov $0x2,%eax ; if false, return 0x2
1.42% |~ ...335: add $0x10,%rsp
8.95% || ...339: pop %rbp
11.77% || ...33a: cmp 0x340(%r15),%rsp
0.02% || ...341: ja ...34f
2.01% || ...347: retq
0.08% »| ...348: mov $0x1,%eax ; if true, return O0x1
0.12% L ...34d: jmp ...335

Here, the compiler capitalized handsomely on available branch frequency data to get the uniform result.

Conclusion

Always-on profiling in multi-tiered compilation schemes allows doing interesting profile-guided optimizations transparently to
users.

JVM Anatomy Quark #29: Uncommon Traps

Questions

What is the finest unit for JIT compilation? If JIT decides to compile the method, does it compile everything in it? Should I warm
up the methods using the real data? What tricks do JIT compilers have to optimize their compilation time?

Theory

It is a common wisdom that JIT compilers work on methods: once a method is deemed hot, the runtime system asks JIT compiler

to produce an optimized version of it. It follows, naively, that JIT compiles the entirety of the method and hands it over to the
runtime system.

But the fact is, the runtime system that allows speculative compilation/deoptimization allows JIT to compile methods with the
sets of assumptions about its behavior. We have seen it before in Implicit Null Checks
(https://shipilev.net/jvm/anatomy-quarks/25-implicit-null-checks/). This time, we would look at a more general thing about the cold code.

Consider this method that is effectively called only with flag = true:

JAVA
void m(boolean flag) {

if (flag) {
// do stuff A
} else {
// do stuff B
b
+

Even if flag is not known from the analysis, the smart JIT compiler can use the branch profiling
(https://shipilev.net/jvm/anatomy-quarks/28-frequency-based-code-layout/) to figure out that "B" branch is never taken, and compile it to:

JAVA
void m() {
if (condition) {
// do stuff A
} else {
// Assume this branch is never taken.
<trap to runtime system: uncommon branch is taken>

Thus, never actually compiling the actual code in branch B. This saves compilation time, usually improves code density, by
avoiding dealing with code that would never be needed.

Note this is different from the code layout based on branch frequency. In this case, when one of the branches frequencies is
exactly zero, we can skip compiling its body completely. If and only if the branch is taken, the generated code traps to runtime
system saying that the compilation pre-condition was violated, and JIT would regenerate the method body in the new conditions,
this time compiling now-not-uncommon branch.

Can we see this in practice?

Test

Consider this JMH benchmark:

https://shipilev.net/jvm/anatomy-quarks/25-implicit-null-checks/
https://shipilev.net/jvm/anatomy-quarks/28-frequency-based-code-layout/

JAVA
@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(1)

@State(Scope.Benchmark)

@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)

public class ColdCodeBench {

@Param({"onlyA", "onlyB", "swap"})
String test;

boolean condition;

@Setup(Level.Iteration)
public void setup() {
switch (test) {
case "onlyA":
condition = true;
break;
case "onlyB":
condition = false;

break;
case "swap":
condition = !condition;
break;
+
+
int v = 1;
int a = 1;
int b = 1;
@Benchmark

@CompilerControl(CompilerControl.Mode.DONT_INLINE)
public void test() {
if (condition) {
v *= a;
} else {
Vv *= b;

}

In this test, we either taking the branch A only, or taking the branch B only, or we flip-flop between them on every iteration.

The point of this test is to demonstrate generated code in a simple manner. The performance for all versions would be roughly
the same in this trivial test. In reality, the cold branches can take a lot of code, especially after inlining, and the performance
impact on both compilation times and generated code density would be substantial.

Not surprisingly and in line with "Frequency-based Code Layout"

(https://shipilev.net/jvm/anatomy-quarks/28-frequency-based-code-layout/), we can see that both "onlyA" and "onlyB" tests lay out the first
branch right away. But then, a curious thing happens: there is no second branch code at all! Instead, there is a call to so called
"uncommon trap"! That one is the notification to runtime that we have failed the compilation condition, and this "uncommon"
branch is now taken.

https://shipilev.net/jvm/anatomy-quarks/28-frequency-based-code-layout/

"onlyA"

9.54% ...3cc: movzbl 0x18(%rsi),%r10d ; load and test $condition
0.21% ...3d1: test %r10d,%r10d
r...3d4: je ...3f6
| ; if true, then...
0.90% | ...3d6: mov 0x10(%rsi),%r10d ; ...load $%a...
7.81% | ...3da: imul Oxc(%rsi),%r10d ; ...multiply by $v...
17.33% | ...3df: mov %r10d,0xc(%rsi) ; ...store to $v...
8.16% | ...3e3: add $0x20,%rsp ; ...and return.
0.60% | ...3e7: pop %rbp
0.18% | ...3e8: cmp 0x340(%r15),%rsp
0.02% | ...3ef: ja ...408
10.51% | ...3f5: retq
| ; if false, then...
v ...3T6: mov %rsi,%rbp
...3f9: mov %r10d, (%rsp)
...3fd: mov $0xffffffa5,%esi
...402: nop
..403: callg <runtime> ; - (reexecute) 0.0.CCB::test@4 (line 73)
; {runtime_call UncommonTrapBlob}
"onlyB"
10.21% ...acc: movzbl 0x18(%rsi),%r10d ; load and test $condition
0.25% ...ad1: test %r10d,%r10d
r ...ad4: jne ...af6
| . if false, then...
0.29% | ...ad6: mov 0x14(%rsi),%r10d ; ...load $b...
8.78% | ...ada: imul Oxc(%rsi),%r10d ; ...multiply by $v...
18.87% | ...adf: mov %r10d,0xc(%rsi) ; ...store $v...
9.74% | ...ae3: add $0x20,%rsp ; ...and return.
0.24% | ...ae7: pop %rbp
0.27% | ...ae8: cmp 0x340(%r15),%rsp
| ...aef: ja ...bos8
9.76% | ...af5: retq
| ; if true, then...
v ...af6: mov %rsi,%rbp

...af9: mov %r10d, (%rsp)
...afd: mov $Oxffffffa5,%esi
...b02: nop
..b03: callg <runtime> ; - (reexecute) 0.0.CCB::test@4 (line 73)
. {runtime_call UncommonTrapBlob}

When that "cold" branch is finally taken, then JVM would recompile the method. It would be visible in -XX:+PrintCompilation
log like this:

Warmup Iteration 1:

// Profiled version is compiled with C1 (+MDO)
351 476 3 org.openjdk.ColdCodeBench: :test (37 bytes)

// C2 version is installed
352 477 4 org.openjdk.ColdCodeBench: :test (37 bytes)

// Profiled version is declared dead
352 476 3 org.openjdk.ColdCodeBench: :test (37 bytes) made not entrant

Warmup Iteration 2:

// Deopt! C2 version is declared dead
1361 477 4 org.openjdk.ColdCodeBench: :test (37 bytes) made not entrant

// Re-profiling version is compiled with C1 (+counters)
1363 498 2 org.openjdk.ColdCodeBench: :test (37 bytes)

// New C2 version is installed
1364 499 4 org.openjdk.ColdCodeBench: :test (37 bytes)

// Re-profiling version is declared dead
1364 498 2 org.openjdk.ColdCodeBench: :test (37 bytes) made not entrant

The final result is clearly visible in "swap" case. There, both branches are compiled:

SHELL
4.25% ...f2c: mov 0xc(%rsi),%r11d ; load $v

6.23% ...T30: movzbl 0x18(%rsi),%r10d ; load and test $condition
0.04% ...f35: test %r10d,%r10d
r ...f38: je ...T45
| ; if false, then
0.02% | ...f3a: imul 0x10(%rsi),%r11d ; ...multiply by $a...
13.33% | ...T3f: mov %r11d,0xc(%rsi) ; ...store $v
3.82% | ...f43: jmp ...f4e
| ; if true, then
0.02% ~| ...f45: imul Ox14(%rsi),%r11d ; ...multiply by $b...
18.70% | ...f4a: mov %r11d,0xc(%rsi) ; ...store $v
6.12% ~ ...fde: add $0x10,%rsp
...T52: pop %rbp
0.08% ...T53: cmp 0x340(%r15),%rsp
...fha: ja ...T61
10.81% ...T60: retq
Conclusion

Advanced JIT compilers can compile only the actually active parts of the method. This simplifies generated code and JIT compiler
overheads. On the other hand, this complicates the warmup: to avoid sudden recompilation, you need to warm up with the
similar profile as you would run later, so that all paths are compiled.

JVM Anatomy Quark #30: Conditional Moves

Questions

Are

there any interesting tricks that can be done when we have branch frequency data? What is a conditional move?

Theory

If you need to choose between two results coming from a branch, there are two distinct things that you can do at ISA level.

First, you can do a branch:

ASM
%r = (%rCond == 1) ? $v1 : $v2

cmp %rCond, $1
jne A

mov %r, $vi
jmp E

A: mov %r, $v2
E:

Second, you can perform a predicated instruction (https://en.wikipedia.org/wiki/Predication_(computer_architecture)) that is dependent
on the result of the comparison. In x86, this takes the form of a conditional move (CMOV) that performs an action when a selected
condition holds:

The

ASM
%r = (%rCond == 1) ? $v1 : $v2

mov %r, $vi ; put $v1 to %r

cmp %rCond, ...

cmovne %r, $v2 ; put $v2 to %r if condition is false

upside for doing a conditional move is that it sometimes generates more compact code, like in this example, and it does not

suffer from possible branch misprediction penalty. The disadvantage is that it requires computing both sides at before choosing

whi

ch one would be returned, which can spend excess CPU cycles, increase register pressure, etc. In branch case, we can choose

not to compute stuff after checking the condition. A well-predicted branch would then outperform the conditional move.

Therefore, the choice whether to do or not to do a conditional move highly depends on its cost prediction. This is where branch
profiling helps us: it can say which branches are probably not perfectly predicted, and thus amenable for CMOV replacement. Of
course, the actual cost model (https://github.com/openjdk/jdk/blob/master/src/hotspot/share/opto/loopopts.cpp#L569-1.764) also includes the
types of the arguments we are dealing with, the relative depth of both computation branches, etc.

Can

we see how this behaves in practice?

Practice 1

Consider this JMH benchmark:

https://en.wikipedia.org/wiki/Predication_(computer_architecture)
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/opto/loopopts.cpp#L569-L764

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(1)
@State(Scope.Benchmark)
@BenchmarkMode (Mode .AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class BranchFrequency {
@Benchmark
public void fair() {
doCall(true);
doCall(false);
+

@CompilerControl(CompilerControl.Mode.DONT_INLINE)
public int doCall(boolean condition) {
if (condition) {
return 1;
} else {
return 2;

JAVA

We flip-flop between the branches on every call, which means its runtime profile is roughly 50%-50% between them. If we limit

the conditional move replacement by supplying -XX:ConditionalMovelLimit=0, then we can clearly see the replacement

happenning.

doCall, out of box variant

4.36% ...4ac: mov $0x1,%r11d ; move $1 -> %r11
3.24% ...4b2: mov $0x2,%eax ; move $2 -> %res
8.46% ...4b7: test %edx,%edx ; test boolean
0.02% ...4b9: cmovne %r11d,%eax ; if false, move %r11 -> %res
7.88% ...4bd: add $0x10,%rsp ; exit the method
8.12% ...4c1: pop %rbp
18.60% ...4c2: cmp 0x340(%r15),%rsp
...4c9: ja ...4d0
0.14% ...4cf: retq

doCall, CMOV conversion inhibited

6.48% ...cac: test %edx,%edx ; test boolean

r ...cae: je ...cc8

| ; if true...

| ...cb0: mov $0x1,%eax ; move $1 -> %res
7.41% |~ ...cb5: add $0x10,%rsp ; exit the method
0.02% || ...cbh9: pop %rbp
27.43% || ...cbha: cmp 0x340(%r15),%rsp

|| ...cc1: ja ...ccf
3.28% || ...cc7: retq

| ; if false...
7.04% »| ...Ccc8: mov $0x2 ,%eax ; move $2 -> %res
0.02% ' ...ccd: jmp ...cbs ; jump back

The CMOV version performs a little better in this example:

SHELL

SHELL
Benchmark Mode Cnt Score Error Units

Branches

BranchFrequency.fair avgt 25 5.422 + 0.026 ns/op
BranchFrequency.fair:L1-dcache-loads avgt 5 12.078 + 0.226 #/op
BranchFrequency.fair:L1-dcache-stores avgt 5 5.037 + 0.120 #/op
BranchFrequency.fair:branch-misses avgt 5 0.001 + 0.003 #/op
BranchFrequency.fair:branches avgt 5 10.037 £+ 0.216 #/op
BranchFrequency.fair:cycles avgt 5 14.659 + 0.285 #/op
BranchFrequency.fair:instructions avgt 5 35.184 + 0.559 #/op
CMOVs

BranchFrequency.fair avgt 25 4.799 £+ 0.094 ns/op
BranchFrequency.fair:L1-dcache-loads avgt 5 12.014 + 0.329 #/op
BranchFrequency.fair:L1-dcache-stores avgt 5 5.005 + 0.167 #/op
BranchFrequency.fair:branch-misses avgt 5 = 10-¢ #/0p
BranchFrequency.fair:branches avgt 5 7.054 + 0.118 #/op
BranchFrequency.fair:cycles avgt 5 12.964 + 1.451 #/op
BranchFrequency.fair:instructions avgt 5 36.285 + 0.713 #/op

You might think that was because the branch misprediction penalty is not there for CMOV, but that explanation is at odds with
counters. Note that "branch-misses" is nearly zero in both cases. This is because hardware branch predictors can actually
remember a short branching history, and this flip-flopping branch poses no problems to them. The actual cause for performance
difference is jumping in the branchy case: we have an additional control-flow instruction on the critical path.

Practice 2

To see the effects of branch misprediction penalties, we need to do a more advanced test, like this:

@Warmup(iterations = 5, time = 500, timeUnit = TimeUnit.MILLISECONDS)
@Measurement(iterations = 5, time = 500, timeUnit = TimeUnit.MILLISECONDS)
@Fork(1)

@BenchmarkMode (Mode .AverageTime)

@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Thread)

public class AdjustableBranchFreq {

@Param("50")
int percent;

boolean[] arr;

@Setup(Level.Iteration)
public void setup() {
final int SIZE = 100_000;
final int Q = 1_000_000;
final int THRESH = percent * Q / 100;
arr = new boolean[SIZE];
ThreadLocalRandom current = ThreadLocalRandom.current();
for (int ¢ = 0; c < SIZE; c++) {
arr[c] = current.nextInt(Q) < THRESH;

}
// Avoid uncommon traps on both branches.
doCall(true);
doCall(false);
}
@Benchmark

public void test() {
for (boolean cond : arr) {
doCall(cond);

¥

@CompilerControl(CompilerControl.Mode.DONT_INLINE)
public int doCall(boolean condition) {
if (condition) {
return 1;
} else {
return 2;

Running it with different percent values and -prof perfnorm JMH profiler would yield this:

Branches vs CMOVs: Average Operation Cost

g I‘_Q_EE III"““““"‘II!I '}II:
6 = e fxxy B TS
§" i_ “.“‘.‘g". "Itssz“““
= 3 == i"“ = - ".-‘e‘
2 L 2
1
0 T
0 10 20 30 40 50 60 70 80 90 100

Branch Probability, %
Branches vs CMOVs: Branch Count

4 o % %0 0%, le%e0000 05,0 ,,%7 0,0 00.074%e004%0% olle0l, Y

0 10 20 30 40 50 60 70 80 90 100
Branch Probability, %

Branches vs CMOVs: Branch Misses

1.0
0.8

0.4 .o."-...‘ "“.-"oo.

#/0]

0.0

0 10 20 30 40 50 60 70 80 90 100
Branch Probability, %

test < cmovs (default) —=- branches only

You can clearly see a few things:

1. The number of branches per test is about 5, and CMOV conversion drops it to 4. This correlates with the disassembly dumps
before: we have one of the branches in the test converted to CMOV. Another 4 branches are from the test infrastructure itself.

2. Without CMOVs, the branch test performance suffers and gets the worst at 50% branch probability. This peak reflects the
nearly-absolute confusion of hardware branch predictor, as it experiences about 0.5 branch misses per operation. This
means the branch predictor does not guess wrong all the time (that would be luducrous!), but just half of the time. I speculate
that history-based predictor just gives up and lets the static predictor choose the closest branch, which we take half of the
time.

3. With CMOVs we can see nearly-flat operation times once it kicks in. This graph says that CMOV cost model was probably too
conservative for this test, and it switched a bit too late. It does not necessarily mean it has a bug, because other cases would
quite probably perform differently. Still, the improvements against branchy case are massive when CMOV conversion takes
place.

4. You might notice that branchy variant dips under CMOV middle average when branches are predicted with >97% accuracy.
Of course, this is again test, HW, VM-specific thing.

Conclusion

Branch profiling allows making more or less informed choices about doing the probability-sensitive instruction selection.
Conditional moves replacement routinely uses branch frequency information to drive the substitution. Once again, this
underlines the need to warm up the JIT-compiled code with the data that resemble real data, so that compilers can optimize
efficiently for the particular case. Unresolved directive in complete.adoc - include::../31-profile-pollution/index.adoc[]

1. Actually it produces one less load-store pair too, which is the side effect of better register allocation.

2. Really, more sensible in the way just-in-time compilers should work, which is the theme for the next post I was writing before discovering
my experiments are toasted because of this pitfall

3. This does not preclude flow-based optimizations, like calling inlined work(new M(4242))

4. Doing the same test with int -s instead of long-s would yield actual mov $0x1, %edx, butIam too lazy to reformat all the assembly listings
for this case.

5. And this had not fully worked, because default inlining heuristics still counts the method size by the bytecode length, regardless of how much
dead code is there. This gradually changes with e.g. incremental inlining.

6. This almost inevitably devolves into template and/or metaprogramming mess we love to write, but hate to debug.

7. Interface calls would be handled similarly, but with a twist during resolution and invocation in the stub.

8. Yet another instance of "Profilers Are Lying Hobbitses (and we hate themittps://www.infoq.com/presentations/profilers-hotspots-bottlenecks)

9.1 am mildly irritated when people claim EA does something: it’s not, further optimizations do!

10. Like the ones the intermediate representation has for local variables and other temporary operands compiler wants to have

11. For example, Graal is known to have Partial Escape Analysis, that is supposed to be more resilient in complex data flows

12. The extreme case of this technique is using vector registers as line buffer!

13. Some register allocators do perform linear allocation — bringing up the speed of regalloc, trading generated code efficiency

14. "Garbage collector" is misnomer, because GC also normally takes care of allocating the memory in the heap structured as GC wants it. See
e.g. Epsilon @Kitps://openjdk.java.net/jeps/318)

15. There are some intricacies in this. For example, Linux would not commit actual memory until the very first use, even if application thinks
the memory is available and owned by the process.

16. Full disclosure: I have implemented most of heap uncommit handling in Shenandoah, and this post is basically the re-run of our early
experiments with it. If this post feels like the advert for Shenandoah, that’s because it is.

17. Enabled with -XX:ShenandoahGCHeuristics=compact

18. In Linux/POSIX case, callinigitp://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/os/linux/os_linux.cpp#13336) mprotect (PROT_NONE) is enough

(http://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/os/linux/os_linux.cpp#15074).

19. Well, almost. On x86, it changes flags, but next instructions would overwrite them anyway, and we only need to take care of never emitting
the safepoint poll between real test and the associated jCC.

20. Thread-local storage is the piece of native data that is accessible per thread. On many platforms, where register pressure is not very high,
generated code always have it in a register. On x86_64, it is usually

(http://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/cpu/x86/x86_64.ad#112878) %r15 .

21. Technically, stopping a subset of threads does not get us to a "safepoint” anymore. But, when thread-local handshakes are enabled, the
safepoint can be reached by handshaking with all threads. This covers both "safepoint” and "handshake" cases wholesale.

22. This, and other examples of disassembled code are generated with the help of [MHitps://openjdk.java.net/projects/code-tools/jmh/) -prof perfasm.

23. This, and further memory representation dumps are done with the help of J@kstps://openjdk.java.net/projects/code-tools/jol)).

24. Technically, the instance size is also down because class word in object header got compressed as well. Digging into that is outside the scope
for this post.

25. There is also another interesting "disjoint" variation of this mode, which activates when heap base has a useful alignment, but this is
beyond the scope for this post. You can dig into source, starting from narrow oop mode

(http://hg.openjdk.java.net/jdk/jdk/file/f3fd73c3a077/src/hotspot/share/memory/universe.hpp#1374).

26. The Epsilon output form you would see in this post is available in newer versions that ship in upcoming 11.0.3, 12.0.2, and head JDK.

27. The non-simple approach would be teaching memory manager to allocate objects at different starting addresses. This requires examining
objects on allocation path, which is interesting from performance standpoint.

28. This, and further memory representation dumps are done with the help of JQhstps://openjdk.java.net/projects/code-tools/jol)).

29. Back-envelope calculation: since -XX:0bjectAlignmentInBytes in Hotspot accepts alignments up to 256, this means max 8-bit shift, and
1024 GB max.

30. We use 8u—instead of whatever the bleeding edge JDK release these days is — to show this optimization is not very new ;)

31. In more complicated cases, the simplified control flow and free register/flags not used by the explicit null check give the nice code quality
improvements.

32. In this code, it actually feeds into so called "uncommon trap", the topic we would cover eventually. Briefly, this is the notification to the
runtime that some never-taken branch is actually taken, and asking JVM to recompile the method using that fact.

33. While this benchmark shows the dynamic recompilation, it can be shown the same effect would be achieved if we fed null -s, and thus
updated the initial profile, before the benchmark code was executed.

34. That 0x..bfe: mov %r12d,0x10(%rsi) is a nice low-level WThttps://twitter.com/shipilev/status/1213203153598001154).

35. -prof perfasm filters everything that happens during warmup iterations, and this is why we don’t see the disassembly from the previous
test.

36. Note this is not a problem for the reference comparisons with ==.1In the overwhelming majority of VM implementations, reference equality
compares addresses. This is mostly because even if GC moves the objects, the Java/runtime code sees the consistent addresses for a given
object. If object A had moved, then all references to A are updated to new address "at the same time", either due to stop-the-world GC, or with
the help of GC barriers.

37. 1t is even worse for 32-bit VMs, that store only the first 25 bits, see more discussion about it here

(https://shipilev.net/jvm/objects-inside-out/#_identity_hash_code).

38. Somewhat amuzingly, I have accidentally changed it from 0 to 5 after doing the performance experiments for JDK-8006176

(https://bugs.openjdk.java.net/browse/JDK-8006176). This process mistake still haunts me.

39. See JDK-81993 BHttps://bugs.openjdk.java.net/browse/JDK-8199394).

40. Here and later, all disassembly code is produced with the help of JMH -prof perfasm.

41.1 always wondered if it is possible for hardware to skip executing/retiring instructions that are obviously non-observable. As of today, I
have never seen it in practice. If such a case manifests, then compiler blackholes would break.

42. JMH can technically detect the compiler blackhole support better. This UX improvement is left for future work.

43. It would be just 2 accesses, not 3, if not the Thread-Local Handshak@sitps:/shipilev.net/jvm/anatomy-quarks/22-safepoint-polls/).

44. Note how the benchmark forbids the inlining of the method. This both improves the generated code fidelity, as we can see the small method
compiled in full, and it also fits a rather unconventional practice

file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_1
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_2
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_3
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_4
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_5
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_6
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_7
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_8
https://www.infoq.com/presentations/profilers-hotspots-bottlenecks
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_9
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_10
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_11
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_12
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_13
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_14
https://openjdk.java.net/jeps/318
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_15
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_16
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_17
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_18
http://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/os/linux/os_linux.cpp#l3336
http://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/os/linux/os_linux.cpp#l5074
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_19
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_20
http://hg.openjdk.java.net/jdk/jdk/file/af7afdababd3/src/hotspot/cpu/x86/x86_64.ad#l12878
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_21
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_22
https://openjdk.java.net/projects/code-tools/jmh/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_23
https://openjdk.java.net/projects/code-tools/jol/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_24
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_25
http://hg.openjdk.java.net/jdk/jdk/file/f3fd73c3a077/src/hotspot/share/memory/universe.hpp#l374
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_26
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_27
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_28
https://openjdk.java.net/projects/code-tools/jol/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_29
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_30
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_31
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_32
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_33
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_34
https://twitter.com/shipilev/status/1213203153598001154
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_35
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_36
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_37
https://shipilev.net/jvm/objects-inside-out/#_identity_hash_code
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_38
https://bugs.openjdk.java.net/browse/JDK-8006176
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_39
https://bugs.openjdk.java.net/browse/JDK-8199394
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_40
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_41
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_42
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_43
https://shipilev.net/jvm/anatomy-quarks/22-safepoint-polls/
file:///home/shade/trunks/shipilev-net/jvm/anatomy-quarks/complete/complete.html#_footnoteref_44
https://github.com/openjdk/jmh/blob/0d2a82094d91a782c5d2f2d594987be5c88e956f/jmh-samples/src/main/java/org/openjdk/jmh/samples/JMHSample_34_SafeLooping.java#L151-L174

(https://github.com/openjdk/jmh/blob/0d2a82094d91a782c5d2f2d594987be5c88e956f/jmh-
samples/src/main/java/org/openjdk/jmh/samples//MHSample_34_SafeLooping.java#L151-L174)
of forbidding the inlining of the method, instead of Blackhole-ing its result.

Last updated 2021-07-31 13:30:32 +0300

https://github.com/openjdk/jmh/blob/0d2a82094d91a782c5d2f2d594987be5c88e956f/jmh-samples/src/main/java/org/openjdk/jmh/samples/JMHSample_34_SafeLooping.java#L151-L174

