1 /*
   2  * Copyright (c) 2017, 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "gc/epsilon/epsilonHeap.hpp"
  26 #include "gc/epsilon/epsilonMemoryPool.hpp"
  27 #include "gc/epsilon/epsilonThreadLocalData.hpp"
  28 #include "gc/shared/gcArguments.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.hpp"
  33 #include "runtime/globals.hpp"
  34 
  35 jint EpsilonHeap::initialize() {
  36   size_t align = HeapAlignment;
  37   size_t init_byte_size = align_up(InitialHeapSize, align);
  38   size_t max_byte_size  = align_up(MaxHeapSize, align);
  39 
  40   // Initialize backing storage
  41   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, align);
  42   _virtual_space.initialize(heap_rs, init_byte_size);
  43 
  44   MemRegion committed_region((HeapWord*)_virtual_space.low(),          (HeapWord*)_virtual_space.high());
  45   MemRegion  reserved_region((HeapWord*)_virtual_space.low_boundary(), (HeapWord*)_virtual_space.high_boundary());
  46 
  47   initialize_reserved_region(reserved_region.start(), reserved_region.end());
  48 
  49   _space = new ContiguousSpace();
  50   _space->initialize(committed_region, /* clear_space = */ true, /* mangle_space = */ true);
  51 
  52   // Precompute hot fields
  53   _max_tlab_size = MIN2(CollectedHeap::max_tlab_size(), align_object_size(EpsilonMaxTLABSize / HeapWordSize));
  54   _step_counter_update = MIN2<size_t>(max_byte_size / 16, EpsilonUpdateCountersStep);
  55   _step_heap_print = (EpsilonPrintHeapSteps == 0) ? SIZE_MAX : (max_byte_size / EpsilonPrintHeapSteps);
  56   _decay_time_ns = (int64_t) EpsilonTLABDecayTime * NANOSECS_PER_MILLISEC;
  57 
  58   // Enable monitoring
  59   _monitoring_support = new EpsilonMonitoringSupport(this);
  60   _last_counter_update = 0;
  61   _last_heap_print = 0;
  62 
  63   // Install barrier set
  64   BarrierSet::set_barrier_set(new EpsilonBarrierSet());
  65 
  66   // All done, print out the configuration
  67   if (init_byte_size != max_byte_size) {
  68     log_info(gc)("Resizeable heap; starting at " SIZE_FORMAT "M, max: " SIZE_FORMAT "M, step: " SIZE_FORMAT "M",
  69                  init_byte_size / M, max_byte_size / M, EpsilonMinHeapExpand / M);
  70   } else {
  71     log_info(gc)("Non-resizeable heap; start/max: " SIZE_FORMAT "M", init_byte_size / M);
  72   }
  73 
  74   if (UseTLAB) {
  75     log_info(gc)("Using TLAB allocation; max: " SIZE_FORMAT "K", _max_tlab_size * HeapWordSize / K);
  76     if (EpsilonElasticTLAB) {
  77       log_info(gc)("Elastic TLABs enabled; elasticity: %.2fx", EpsilonTLABElasticity);
  78     }
  79     if (EpsilonElasticTLABDecay) {
  80       log_info(gc)("Elastic TLABs decay enabled; decay time: " SIZE_FORMAT "ms", EpsilonTLABDecayTime);
  81     }
  82   } else {
  83     log_info(gc)("Not using TLAB allocation");
  84   }
  85 
  86   return JNI_OK;
  87 }
  88 
  89 void EpsilonHeap::post_initialize() {
  90   CollectedHeap::post_initialize();
  91 }
  92 
  93 void EpsilonHeap::initialize_serviceability() {
  94   _pool = new EpsilonMemoryPool(this);
  95   _memory_manager.add_pool(_pool);
  96 }
  97 
  98 GrowableArray<GCMemoryManager*> EpsilonHeap::memory_managers() {
  99   GrowableArray<GCMemoryManager*> memory_managers(1);
 100   memory_managers.append(&_memory_manager);
 101   return memory_managers;
 102 }
 103 
 104 GrowableArray<MemoryPool*> EpsilonHeap::memory_pools() {
 105   GrowableArray<MemoryPool*> memory_pools(1);
 106   memory_pools.append(_pool);
 107   return memory_pools;
 108 }
 109 
 110 size_t EpsilonHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 111   // Return max allocatable TLAB size, and let allocation path figure out
 112   // the actual TLAB allocation size.
 113   return _max_tlab_size;
 114 }
 115 
 116 EpsilonHeap* EpsilonHeap::heap() {
 117   CollectedHeap* heap = Universe::heap();
 118   assert(heap != NULL, "Uninitialized access to EpsilonHeap::heap()");
 119   assert(heap->kind() == CollectedHeap::Epsilon, "Not an Epsilon heap");
 120   return (EpsilonHeap*)heap;
 121 }
 122 
 123 HeapWord* EpsilonHeap::allocate_work(size_t size) {
 124   assert(is_object_aligned(size), "Allocation size should be aligned: " SIZE_FORMAT, size);
 125 
 126   HeapWord* res = _space->par_allocate(size);
 127 
 128   while (res == NULL) {
 129     // Allocation failed, attempt expansion, and retry:
 130     MutexLocker ml(Heap_lock);
 131 
 132     size_t space_left = max_capacity() - capacity();
 133     size_t want_space = MAX2(size, EpsilonMinHeapExpand);
 134 
 135     if (want_space < space_left) {
 136       // Enough space to expand in bulk:
 137       bool expand = _virtual_space.expand_by(want_space);
 138       assert(expand, "Should be able to expand");
 139     } else if (size < space_left) {
 140       // No space to expand in bulk, and this allocation is still possible,
 141       // take all the remaining space:
 142       bool expand = _virtual_space.expand_by(space_left);
 143       assert(expand, "Should be able to expand");
 144     } else {
 145       // No space left:
 146       return NULL;
 147     }
 148 
 149     _space->set_end((HeapWord *) _virtual_space.high());
 150     res = _space->par_allocate(size);
 151   }
 152 
 153   size_t used = _space->used();
 154 
 155   // Allocation successful, update counters
 156   {
 157     size_t last = _last_counter_update;
 158     if ((used - last >= _step_counter_update) && Atomic::cmpxchg(used, &_last_counter_update, last) == last) {
 159       _monitoring_support->update_counters();
 160     }
 161   }
 162 
 163   // ...and print the occupancy line, if needed
 164   {
 165     size_t last = _last_heap_print;
 166     if ((used - last >= _step_heap_print) && Atomic::cmpxchg(used, &_last_heap_print, last) == last) {
 167       print_heap_info(used);
 168       print_metaspace_info();
 169     }
 170   }
 171 
 172   assert(is_object_aligned(res), "Object should be aligned: " PTR_FORMAT, p2i(res));
 173   return res;
 174 }
 175 
 176 HeapWord* EpsilonHeap::allocate_new_tlab(size_t min_size,
 177                                          size_t requested_size,
 178                                          size_t* actual_size) {
 179   Thread* thread = Thread::current();
 180 
 181   // Defaults in case elastic paths are not taken
 182   bool fits = true;
 183   size_t size = requested_size;
 184   size_t ergo_tlab = requested_size;
 185   int64_t time = 0;
 186 
 187   if (EpsilonElasticTLAB) {
 188     ergo_tlab = EpsilonThreadLocalData::ergo_tlab_size(thread);
 189 
 190     if (EpsilonElasticTLABDecay) {
 191       int64_t last_time = EpsilonThreadLocalData::last_tlab_time(thread);
 192       time = (int64_t) os::javaTimeNanos();
 193 
 194       assert(last_time <= time, "time should be monotonic");
 195 
 196       // If the thread had not allocated recently, retract the ergonomic size.
 197       // This conserves memory when the thread had initial burst of allocations,
 198       // and then started allocating only sporadically.
 199       if (last_time != 0 && (time - last_time > _decay_time_ns)) {
 200         ergo_tlab = 0;
 201         EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
 202       }
 203     }
 204 
 205     // If we can fit the allocation under current TLAB size, do so.
 206     // Otherwise, we want to elastically increase the TLAB size.
 207     fits = (requested_size <= ergo_tlab);
 208     if (!fits) {
 209       size = (size_t) (ergo_tlab * EpsilonTLABElasticity);
 210     }
 211   }
 212 
 213   // Always honor boundaries
 214   size = MAX2(min_size, MIN2(_max_tlab_size, size));
 215 
 216   // Always honor alignment
 217   size = align_up(size, MinObjAlignment);
 218 
 219   // Check that adjustments did not break local and global invariants
 220   assert(is_object_aligned(size),
 221          "Size honors object alignment: " SIZE_FORMAT, size);
 222   assert(min_size <= size,
 223          "Size honors min size: "  SIZE_FORMAT " <= " SIZE_FORMAT, min_size, size);
 224   assert(size <= _max_tlab_size,
 225          "Size honors max size: "  SIZE_FORMAT " <= " SIZE_FORMAT, size, _max_tlab_size);
 226   assert(size <= CollectedHeap::max_tlab_size(),
 227          "Size honors global max size: "  SIZE_FORMAT " <= " SIZE_FORMAT, size, CollectedHeap::max_tlab_size());
 228 
 229   if (log_is_enabled(Trace, gc)) {
 230     ResourceMark rm;
 231     log_trace(gc)("TLAB size for \"%s\" (Requested: " SIZE_FORMAT "K, Min: " SIZE_FORMAT
 232                           "K, Max: " SIZE_FORMAT "K, Ergo: " SIZE_FORMAT "K) -> " SIZE_FORMAT "K",
 233                   thread->name(),
 234                   requested_size * HeapWordSize / K,
 235                   min_size * HeapWordSize / K,
 236                   _max_tlab_size * HeapWordSize / K,
 237                   ergo_tlab * HeapWordSize / K,
 238                   size * HeapWordSize / K);
 239   }
 240 
 241   // All prepared, let's do it!
 242   HeapWord* res = allocate_work(size);
 243 
 244   if (res != NULL) {
 245     // Allocation successful
 246     *actual_size = size;
 247     if (EpsilonElasticTLABDecay) {
 248       EpsilonThreadLocalData::set_last_tlab_time(thread, time);
 249     }
 250     if (EpsilonElasticTLAB && !fits) {
 251       // If we requested expansion, this is our new ergonomic TLAB size
 252       EpsilonThreadLocalData::set_ergo_tlab_size(thread, size);
 253     }
 254   } else {
 255     // Allocation failed, reset ergonomics to try and fit smaller TLABs
 256     if (EpsilonElasticTLAB) {
 257       EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
 258     }
 259   }
 260 
 261   return res;
 262 }
 263 
 264 HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
 265   *gc_overhead_limit_was_exceeded = false;
 266   return allocate_work(size);
 267 }
 268 
 269 void EpsilonHeap::collect(GCCause::Cause cause) {
 270   switch (cause) {
 271     case GCCause::_metadata_GC_threshold:
 272     case GCCause::_metadata_GC_clear_soft_refs:
 273       // Receiving these causes means the VM itself entered the safepoint for metadata collection.
 274       // While Epsilon does not do GC, it has to perform sizing adjustments, otherwise we would
 275       // re-enter the safepoint again very soon.
 276 
 277       assert(SafepointSynchronize::is_at_safepoint(), "Expected at safepoint");
 278       log_info(gc)("GC request for \"%s\" is handled", GCCause::to_string(cause));
 279       MetaspaceGC::compute_new_size();
 280       print_metaspace_info();
 281       break;
 282     default:
 283       log_info(gc)("GC request for \"%s\" is ignored", GCCause::to_string(cause));
 284   }
 285   _monitoring_support->update_counters();
 286 }
 287 
 288 void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
 289   collect(gc_cause());
 290 }
 291 
 292 void EpsilonHeap::safe_object_iterate(ObjectClosure *cl) {
 293   _space->safe_object_iterate(cl);
 294 }
 295 
 296 void EpsilonHeap::print_on(outputStream *st) const {
 297   st->print_cr("Epsilon Heap");
 298 
 299   // Cast away constness:
 300   ((VirtualSpace)_virtual_space).print_on(st);
 301 
 302   st->print_cr("Allocation space:");
 303   _space->print_on(st);
 304 
 305   MetaspaceUtils::print_on(st);
 306 }
 307 
 308 void EpsilonHeap::print_tracing_info() const {
 309   print_heap_info(used());
 310   print_metaspace_info();
 311 }
 312 
 313 void EpsilonHeap::print_heap_info(size_t used) const {
 314   size_t reserved  = max_capacity();
 315   size_t committed = capacity();
 316 
 317   if (reserved != 0) {
 318     log_info(gc)("Heap: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
 319                  SIZE_FORMAT "%s (%.2f%%) used",
 320             byte_size_in_proper_unit(reserved),  proper_unit_for_byte_size(reserved),
 321             byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
 322             committed * 100.0 / reserved,
 323             byte_size_in_proper_unit(used),      proper_unit_for_byte_size(used),
 324             used * 100.0 / reserved);
 325   } else {
 326     log_info(gc)("Heap: no reliable data");
 327   }
 328 }
 329 
 330 void EpsilonHeap::print_metaspace_info() const {
 331   size_t reserved  = MetaspaceUtils::reserved_bytes();
 332   size_t committed = MetaspaceUtils::committed_bytes();
 333   size_t used      = MetaspaceUtils::used_bytes();
 334 
 335   if (reserved != 0) {
 336     log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
 337                             SIZE_FORMAT "%s (%.2f%%) used",
 338             byte_size_in_proper_unit(reserved),  proper_unit_for_byte_size(reserved),
 339             byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
 340             committed * 100.0 / reserved,
 341             byte_size_in_proper_unit(used),      proper_unit_for_byte_size(used),
 342             used * 100.0 / reserved);
 343   } else {
 344     log_info(gc, metaspace)("Metaspace: no reliable data");
 345   }
 346 }