SPECjbb2012: Updated Metrics for a Business Benchmark

Aleksey Shipilev
Oracle Corporation
Saint-Petersburg, Russian Fed.

aleksey.shipilev@oracle.com

ABSTRACT

SPEC [1] benchmarks have an excellent track record as use-
ful tools for performance engineers. Many hardware ven-
dors, software developers, and researchers continue to use
SPEC benchmarks as reference workloads to characterize
systems, test compiler optimizations, track performance re-
gression tracking, and software quality.

SPECjbb2005 is the industry standard benchmark for eval-
uating the performance of servers running typical Java busi-
ness applications. Modern customer requirements and use
cases have shifted the focus of performance assessments from
pure throughput to include throughput/response time and
throughput/power considerations.

SPECjbb2012 is the new incarnation of SPECjbb2005,
targeted to assess these new demands. This paper gives the
highlights for new metrics in SPECjbb2012, the rationale
behind them, and technical challenges faced in its imple-
mentation.

Categoriesand Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms

Design, Measurement, Performance

Keywords

SPECjbb2005, SPECjbb2012, response time, max injection
rate, critical injection rate

1. DESIGN CONSIDERATIONS

The design goal for SPECjbb2012 was to keep the simplic-
ity of SPECjbb2005 [2], while addressing more requirements
and use cases for the benchmark.

The classic metric in a business benchmark is raw through-
put, which tells a lot about system capacity at its peak.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICPE' 12, April 22-25, 2012, Boston, Massachusetts, USA

Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

David Keenan
Oracle Corporation
Albany, NY, USA
david.keenan@oracle.com

However, the emerging importance of power and response
time requirements has pushed benchmark vendors to adopt
new metrics.

The usual design for server-centric client/server bench-
mark is having one or multiple clients (drivers) to issue re-
quests for one or multiple Systems Under Test (SUT) with
some characteristic requested injection rate (IR), and real-
istic think times delays and distributions.

The largest complication in this scheme is that clients do
not have instant feedback on server utilization and capacity.
Speficifically, queueing on the server side, communication
latencies, delays in processing, etc. are causing delays in
feedback to the client. Intelligent schemes for tuning IR, i.e.
increasing IR when the server can process more, or decrease
IR when the server can not, should take these considerations
into account.

In the grand scheme of things, introducing an adaptive
scheme into workload implies including a feedback loop,
bringing the work into scope of control theory. In fact,
we had experienced the predictions of control theory, when
naive schemes for auto-tuning experienced semi-harmonic
oscillations, or long transitional periods.

Because of that, most workloads are falling back to run-
ning at a stable, or preset, IR, and letting the user decide
at which IR level to run. While SPECjbb2012 supports
running at a preset IR to facilitate performance analysis
and workload development, we considered getting maximum
workload scores in this mode a tedious task for the user.

1.1 Settling Criteria

The key observation for automatic tuning of IR is that
the Driver has quite a limited opportunity to infer the state
of the SUT. The mere fact that the Driver’s request was
accepted does not imply it will get processed in a reasonable
time, nor does the rejection of the Driver’s request imply the
SUT is unable to process more in the next time slot.

One of the naive feedback solutions to this problem is
having a bounded acceptance queue on the SUT side, which
will deny Driver requests from being accepted when the SUT
is over-saturated. However, we observed the performance of
the workload to be extremely sensitive to queue size across
different JVMs, and different architectures, etc. Hence, we
saw the need for a more vendor-neutral solution.

To address this, we instrumented the SUT to provide us
with the actual processing rate (PR), which tells us how
many requests were actually processed. By comparing this
with requested IR (rIR) we can deduce whether the SUT
is capable of handling the IR we are injecting or not. Ad-
ditionally, the Driver is instrumented to provide actual IR

(aIR), which tells how many actual requests were submitted
to the system.

This enables us to change the IR dynamically, and ob-
serve whether the system had settled on new a IR by cross-
comparing rIR, alR, and PR. If those three match, then the
system is running steadily on the requested IR. Discrepan-
cies in either highlights a capacity problem with the Driver,
or the SUT.

1.2 Saturatingthe SUT

One of the goals for SPECjbb2012 is to keep the Driver
light enough so not to require large machines to feed the SUT
with requests. The key observation is that once the Driver
had to maintain the state for each outstanding request to
the SUT, the overhead of maintaining this state grows with
number of outstanding requests. Then, by Little’s Law, the
number of requests is growing as the product of throughput
and response time.

From the implementation standpoint, this either calls for
an asynchronous processing scheme with a small number
of threads dealing with larger amount of clients, or a syn-
chronous processing scheme with a huge number of threads,
one per client. While asynchronous processing can solve re-
source problems, measuring response time requires precise
timings, and waiting for someone to process asynchronous
response will skew the response time measurement.

We solved this dilemma by clearly separating probe and
saturate requests. Probe requests are synchronously wait-
ing for a response, thus providing the means for measur-
ing response time accurately. There’s a bounded number
of threads servicing probe requests. Saturate requests are
submitted without waiting for a response; hence, the Driver
threads are freed up once a saturate request is accepted,
and can be recycled to submit another saturate request.
Since there’s no response time measurement, we are able
to submit batches of saturate requests to further unload the
Driver. There’s a tradeoff between the accuracy of think
time distributions maintained by Driver, and the impact of
the Driver itself. Both probe and saturate requests share the
same submission budget, which ensures that the Driver sub-
mission rate does not out-pace the requested IR. We have
verified that this approach is able to inject several orders of
magnitude more requests than the SUT had to process.

2. METRICS
2.1 Raw throughput metric: max IR

Given the mechanics above, we can gradually increase the
IR within one run, and see if the system settles on it. There
are some complications with warmup and steady state. The
measurement is done in two phases: searching for a high-
bound of maxIR (hbIR), and then searching for maxIR itself.

The schematics for hbIR searching is to grow IR exponen-
tially, starting from some base IR:

IR(”) = I Rbase + I Rstep *Oén,Oé >1,neN

Once we hit over-saturation, we set the base IR to the pre-
vious successful IR, and restart the search. Obviously, since
base IR is always growing, and there exists the system limit
on possible IR, this search converges. The mere fact we
can’t step upwards anymore means we had also completed
warmup. Each step during this search takes a few seconds,
hence hbIR is not measured in steady state.

The next phase is to measure maxIR during steady state.
We have to try multiple IRs, each of those should be done in
steady state, which will take some time to achieve. However,
there’s also the reasonable limit on run time. To fit these
contradicting requirements, the workload slowly grows IR
in a linear fashion, hoping for a smooth transition between
steady states on consequent IRs:

IR(n) = IRny * B3, € [0;1]

In default mode, we are doing 1% steps with 30 sec measure-
ment each. At some point the system will fail to settle, and
the IR preceding that point will be counted as the actual
maxIR. There are also retry mechanisms in place to toler-
ate inadvertent hiccups. We had found maxIR is within [75;
95]% of hbIR on most systems.

2.2 Responsetimemetric: critical IR

We can reuse the data from maxIR measurement to infer
response time metrics. Since probe requests are happening
during search for maxIR, we are effectively gathering the
response time samples on different levels of maxIR. In fact,
we can build the throughput — response time (TRT) curves,
which is the ultimate characteristic of the workload running
on the system.

Point measures are still more useful as metrics, so we have
to infer something from the TRT curve. In SPECjbb2012 we
had settled on throughput-related metric named critical IR,
which is defined as maximum IR, at which some service-level
agreement for response time is still achieved.

By default, critical IR is measured at 100 ms response time
target in the 99" percentile. However, since all response
time samples are saved in the logs for the run, there are ways
to post-mortem compute critical IR for different response
time targets and percentile levels.

Additional methods for conditioning response time sam-
ples, like bootstrapping, are possible to provide more robust
approximations for critical IR at high percentile levels.

2.3 Power metric. W/ops

Once we determine a precise maxIR, we can go for power
measurement. Best practices for power measurement man-
date measurement on different IR levels, going from peak IR
down to essentially zero IR (so called “active-idle state”) [3].
This requirement does not allow us to do power measure-
ment during TRT curve, which goes in an upward direction.
However, we can dedicate another phase of the workload
specifically for power measurement.

3. IMPLEMENTATION CONSIDERATIONS

3.1 Re-initialization

The major issue with changing the IR during the run is
the risk of over-saturation, when the system is not able to
handle the IR we are injecting. In the best case, this will
grow the occupancy of the submission queues in the SUT.
In the worst case, this over-saturation might impede normal
operation of the SUT, knocking it off of steady state, or even
drive it to an inconsistent state.

To clean up after over-saturation, the workload can invoke
re-initialization, which will shutdown all parts of the work-
load except for a minimal infrastructure, ask for aggressive
GCs, and then initialize the workload again. This effectively
resets the system to a pristine state.

10 - n n n
| | éécé
I I
) I ¢
10 I ™ I
1 1 1
| ly |
10°- | Al 1
) 0
S I A? I
»
o [‘P‘F‘F% a0 [
£ 4; f I I
=107 - i %og0 ¢
g IHM‘L Joo I I
5 m m; P I I
i . o
g ‘u %®o® I I
o g?- 5 G)oood) i
‘L‘LL‘L %0 I | |
mwmw PUREPRERS I I I
oo%% I I I
1073- | | |
1 1 1
| | |
I I I L | I
10000 20000 30000 40000 50000
Injection Rate (IR), ops/sec
90-th -~ 95-th & 99-th
Figure 1: Typical throughput - response time curve
3.2 Snapshots control, and terminates the activity in the current JVM. It

The problem with re-initialization is that it discards all
the business data collected during the run, and starts over.
Sometimes this is undesirable, because the data state is a
part of the steady state. To account for that, the work-
load can snapshot its state at known good points during the
workload lifetime, essentially serializing the state of all data
structures to a binary blob, and storing it.

Given the concurrent nature of the workload, snapshots
require quiescence; hence, acquiring a snapshot breaks the
steady state. Combined with the cost of serializing, com-
pressing, and writing out the snapshots, we can only afford
that in several designated places in the workload.

Re-initialization uses the last available snapshot to restore
the system state. Each subsequent snapshot is a better start-
ing point should re-initialization be required.

3.3 Heartbeats

Sometimes over-saturation causes the system to go com-
pletely haywire. In these conditions, it may happen that
remote communication is sometimes stalled, and the Con-
troller’s request to terminate the run might not be delivered
to the JVM in question.

To address this, the heartbeats (HB) infrastructure is used.
There are multiple HB watchdogs running in the JVMs, pe-
riodically polling each other. Once a HB watchdog fails to
receive its pending heartbeats, it assumes the system has lost

also shuts itself down, so other HB watchdogs can detect the
failure. After HB failure occurs, the system can only recover
with re-initialization.

While there are other ways to control the system, e.g. let
the Controller reinforce the intent to run at a specific IR
every once in a while, we had found the HB infrastructure
to be useful in other failure modes, e.g. when one of the
JVMs participating in the run crashes or suddenly dies.

4. EXPERIMENTAL STUDY

Empirical evaluation of the proposed metrics scheme is the
current focus of SPECjbb2012 development. In this section,
we highlight the results of one. The experimental setup was
as follows:

e Intel Xeon X7560 (Nehalem-EX), 4 sockets, 10 cores
per socket, 2 threads per core, running at 2.27 GHz.

e 16x 4Gb PC3-8500F DIMMs, 64 Gb total

Oracle JDK 7 Update 2, RedHat AS 5 (64-bit)

SPECjbb2012 beta (EOY 2011), transports disabled

e Java params: -d64 -Xmx8g -Xms8g -XX:+UseNUMA -
XX:+UseConcMarkSweepGC -XX:-UseBiasedLocking

e

Density

P e e

| ' | '
2500 3000 3500
Total run time, secs

Figure 2: Total run time

4.1 Typical TRT curve

Figure 1 shows typical TRT curve gathered during the
run. Vertical dashed lines correspond to critical IR, max
IR, and high-bound IR, respectively. The Y axis is log-
scale, hence RT quantiles are growing at an exponential rate.
Notice that the critical IR line intercepts the 99'* percentile
curve at 100ms target. The curve itself is rather monotonic
to enable measurements on lower RT targets. Additional
robust approximation schemes are suggested to remove the
high-quantile jitter.

The max IR line clearly demarcates the start of over-
saturation, where response times are getting orders of mag-
nitude higher. Over-saturation is detected by failing to settle
on requested IR, but the artifacts on TRT curve are visible
as well.

4.2 Runtime

Obviously, there’s tradeoff between workload run time and
accuracy. Longer workloads can afford more precise mea-
surements, while shorter workloads provide a better user
experience. SPECjbb2012 has sensible targets with regards
to run times, to not exceed 2 hours, while aggressively push-
ing into a 1 hour envelope. Figure 2 gives the impression of
usual run times for SPECjbb2012. The mean run time is
close to 4.000 seconds, at least 3.600 of which takes building
TRT curve.

4.3 Metricsvariance

To estimate variance, we had executed 100 complete runs
on the target hardware. These measurements include both
intrinsic workload variance, as well as general run-to-run
variance due to indeterminism in JVM behavior [4].

The results for maxIR and criticallR are packed into Fig-
ure 3. With the default settings, maxIR is quantized in 100
levels, with the highest level equaling hbIR. Since hblIR is
also variating, the number of possible values for maxIR is
much larger than 100. Critical IR experiences quantization
as well for the same reason.

The variance of the workload is much larger than quanta
size; hence, finer steps in TRT curve seem unnecessary. We
are currently investigating the reasons behind the workload
variance, and what can be reasonably done in the workload
to shun unwarranted sources of indeterminism.

Critical Injection Rate, ops/sec

40000 -

54000 56000
Max Injection Rate, ops/sec

Figure 3: maxIR/criticallR correlation

5. FUTURE WORK

At the present moment, SPECjbb2012 development has
reached the stabilization phase. More assessments are in
progress, variance is being investigated, and general work-
load behavior on wide range of platforms is being researched.

6. ACKNOWLEDGMENTS

The authors want to acknowledge the additional members
of the SPEC JAVA Subcommittee who have contributed
to the design, development, testing, and overall success of
SPEC benchmarks. The name SPEC together with its tool
and benchmark names are registered trademarks of the Stan-
dard Performance Evaluation Corporation (SPEC).

7. REFERENCES

[1] Standard Performance Evaluation Corporation
http://www.spec.org/

[2] A. Adamson, D. Dagastine, S. Sarne. SPECjbb2005 - A
Year in the Life of a Benchmark.

[3] Standard Performance Evaluation Corporation. SPEC
Power and Performance. Benchmark Methodology,
V2.1.

[4] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous java performance evaluation. SIGPLAN Not.,
42:57-76, October 2007.

