Devoxx University:
Performance Methodology

ORACLE

Aleksey Shipilev Kirk Pepperdine

Java Performance Java Performance
Oracle Kodewerk
@shipilev @kcpeppe

®
&
=
®
—
®
LY -
E
O
&
P
G
=
E
O
&
E
O
>
O
B
©
;=
4t

X
0
>
fl
0

Aleksey Shipilev

Speaker Bio

m /+ years of (Java) Performance
m 3 years at Intel
m 4 years at Sun/Oracle

Projects

Apache Harmony
Oracle/Open]DK
SPECjbb201x

https://github.com/shipilev/

Kirk Pepperdine & Lo

Speaker Bio
m 15 year Performance tuning across many industries
m Background in super and exotic computing platforms
Helped found
Developed Java performance seminar (www.kodewerk.com)
Member of Java Champion program, Netbeans Dream Team
Recently founded JClarity,
B 3 company who's purpose is to redefine performance tooling
m |nvite you to join Friends of |Clarity ()

http://www.javaperformancetuning.com/
http://www.jclarity.com/

#include <disclaimer.h>

The resemblance of any opinion,
recommendation or comment made
during this presentation to
performance tuning advice 1S
merely coincidental.

Measure Don't Guess

m Hypothesis free investigations
B Progress through a series of steps to arrive at a conclusion

Introduction

Computer Science -
Software Engineering

m Way to construct software

to meet functional
requirements

B Abstract machines

m Abstract and composable,
“formal science”

Software Performance
Engineeering

m “Real world strikes back!”

B Researching complex
Interactions between
hardware, software, and
data

B Based on empirical evidence

Iale

Benchmark

SR e iy PS8 ~0~

000 — BT 5L8L s L8 c8=o~

Ow .|0-|0011100.|-|0. “|1%\1101010.|
OO0 ——
=Nl
O—0O00O
O—OO0O
—
-~ogeso

O———0O0O00O0O——0O
COoOTrPTE v

O S 8BE = =

— O — O o o oo

GET PAST PEER REVEW.

Experimental Setup T

WHAT DO You MEAN
OtE DATA POINT IS

You can't go any further without the
proper test environment

Relevant: reproduces the phenomena
Isolated: |eaves out unwanted effects
Measurable: provides the metrics
Reliable: produces consistent result

WWW.PHDCOMICS.COM

"Piled Higher and Deeper" by Jorge Cham
www.phdcomics.com

Relevant and Isolated

B Hardware
B Production like
B Phantom bottlenecks
B Quiet
m Software
B Test harness
B | oad injector and acceptor
m Data
B Production like in volumes and veracity

Measurable and Reliable

m Usage Patterns
B Describes load

B Use case + number of users and transactional rates,
velocity

B Performance requirements
B Trigger metric is most likely average response time
m Validation
m Test the test!
m Make the sure your bottleneck isn't in the test harness!

Performance Testing Steps

B Script usage patterns into a load test

m |nstall/configure application to the same specs as production
B Setup monitoring

B Performance requirements

B OS performance counters and garbage collection

Kill everything on your system

Spike test to ensure correctness

Load test

Validate results

Repeat as necessary

Demo 1

Introducing the test

Metrics

Throughput Time

(Bandwidth) (Latency)

m How many operations are ® How much time one
done per time unit? operation took?

m Have many forms: ops/sec, ® Targets many things:
MB/sec, frags/sec latency, response time,

startup time

B Generally hard to measure
(reliably)

B Easiest to measure
m Easiest to interpret

Bandwidth vs. Latency

100000000 - critical-joOpPs max+j0Ps
Tt
+
10000000 - L A
; ﬂ;q:
[
14 T
E | |I I ‘l‘-
J J I J
- 1000000 - . : e g ||I|I A e "_""
al] : - e kS R i i ° P
= ; T gy Y pincietd = [] » a®
= i ® TR
aTrbor oot
: gl T ssve 0007
[)
S 100000 R E ot 00 t
a : ' g 0 H
e’ ' L
| s’ A
® ES .
10000 ; ;"
'WM H
| 1
i w HFE g7
o g oo B R FR o A
1000 - :ZFI-'F:I:j-_I-j_-H'HH'-I-I++ +|-|-H-I-|-|-|-|+-|-:+|-|-|-|-|-H-|-I:H:F++FFFFFFFFFFFF=F"‘FF""|""=FFFFF=F+"""'+H""""++""H'"H""'H+{'+H' FEH
S00 1000

Throughput, opsfsec

m min & median

90-th percentile

95 -th percentile = 99-th percentile M ax

Source: upcoming SPECjbb2013

Little's Law

The nice artifact of the queuing theory

L = AT

L: number of outstanding requests, concurrency level
A: throughput
T: service time

Implications:
m Under the same L, A is inversely proportional to T
m Under known A and T, you can infer the L

Pop Quiz

Imagine the application with two distinct phases
m Part A takes 70% of time, potential speedup = 2x
m Part B takes 30% of time, potential speedup = 6x
m \Which one to invest Iin?

70 sec 30 sec

Pop Quiz

Imagine the application with two distinct phases
B Part A takes 70% of time, potential speedup = 2x
m Part B takes 30% of time, potential speedup = 6x
m \Which one to invest Iin?

Optimize B
Optimize A s s

Ahmdal's Law

We can generalize this observation as:

B A
- A+ B

Part(A)

1

SpeedUp =

Part(A)
(1 — Part(A)) + TocedU »(A)

Ahmdal's Law Limits Speedups

Total Speedup

10

0.0

0.1

0.2

0.3

0.4

Part

Speedups
. Px
4

mm 8

20x

Applying Ahmdal's Law

Imagine the application with two distinct phases
B Part A takes 70% of time, potential speedup = 2x
m Part B takes 30% of time, potential speedup = 6x
m \Which one to invest Iin?

Optimize B: +33%
Optimize A; +53% IEET T

Where Ahmdal's Law Breaks Down

Composability
B Given two functional blocks, A and B
B The difference with executing (A seq B) or (A par B)?

Functional-wise:
B Result(A seq B) == Result(A par B)
B “Black box abstraction”

Performance-wise:
B Performance(A seq B) Performance(A par B)
m No one really knows!

Demo 2

Ensure test is reliable

Age: 2

Generational Counts

Age:3

Age:4

pX¢
ﬁ"ﬁr
W

ﬁfz

W W
‘i&’*ﬂrg

wWOW

Generational Counts (2)

Age:1 Age: 2 Age:3 Age:4
OO ¥ % o e % w
> QO |0 ** % WA
> 00| %% w oA e
0000 pox| ¥ |& «

Object |Generations Count |Classify
Q 1 1 Normal
EDZI 1,2 2 Normal

4 1 Cached
% 1 1 Normal
O 1,2 2 Normal
W [1,2.3,4 4 Leak

How to speed up the application?

Change something somewhere in some specific way!

How to speed up the application?

Change something somewhere in some specific way!

How to speed up the application?

Change something somewhere in some specific way!

m \\What?

B \Where?

B How?

How to speed up the application?

Change something somewhere in some specific way!

m \What prevents the application to work faster?

m \Where it resides?

B How to change it to stop messing with performance?

How to speed up the application?

Change something somewhere in some specific way!

m \What prevents the application to work faster?
Courage, experience, and monitoring tools

B Where it resides?
Courage, experience, and profiling tools

B How to change it to stop messing with performance?
Courage, experience, your brain, and your favorite IDE

Top-Down Approach (classic)

System Level
B Network, Disk, CPU/Memory, OS

Application Level
m Algorithms, Synchronization, Threading, API

Microarchitecture Level
m Code/data alignment, Caches, Pipeline stalls

Top-Down Approach (Java)

System Level
B Network, Disk, CPU/Memory, OS

JVM Level
m GC, JIT, Classloading

Application Level
m Algorithms, Synchronization, Threading, API

Microarchitecture Level
m Code/data alignment, Caches, Pipeline stalls

+ |terative Approach

/[Experiment]\

[Start]—»[Develop] [Gather data]
N /
[Prototype }—[Analyze J

m Start new phase when functional tests are passed
® Single change per cycle
@ Document the changes

\— O — O —O— 0O
PSS ES 0~

000~ VBB LS5 TS CP=8=8Fo«~
Ow .|0-|0011100.|-|0. “|1%\1101010.|

OO0 ——
=Nl
OC—00O0
O—OO0O
—
-~ogeso

O———0O0O00O0O——0O
COoOTrPTE v

O S 8BE = =

— O — O o o oo

System Level (CPU)

: : Extensive disk activity?
Lots of iowait% - LA

. MNetwork problems? | Mot enol I"_J|'1 disk/block caches?
Scheduling overheads? Mot enough SW threads
.) —|_Lots of 5"1_.:"5% o / ote of idled, J A
0

- swapping? : f lot enough RUMNMABLE SW threads

_ Other kernel? CF’U 7 f GC pauses?

Interacting with devices? . Lots of irq%., s Dﬁ:% J /M is burning the cycles? _
) System services?) : _ Lots of user% |- f-xl-;;|-::u|'itl"||'r|i-:: problems?

. Credits Memory problems?

£

\ CPU problems?

The entry point is CPU utilization!

B Then, you have multiple things to test for

B Depending on sys%, irq%, iowait%, idle%, user%
B Need tools to examine each particular branch

Demo 3

First dive into the monitoring

System Level (sys%)

Metworle problems?

o
Scheduling overheads?

. Lots of sys%

-._

swapping? f

- Lc:ts of liowait%
"_;'l'l-i'l' cermel? CF’UT’ »_ Lots of idle% _

(: ., Lt::tsﬁc:f iIrq%, soft% f \ Lots of user%

. Credits

Not particularly the application code fault
Most obvious contender is network I/O
Then, scheduling overheads

nen, swapping

nen, In minor cases, other kernel

System Level (sys%, network)

TOOL: netstat, sar, iptraf, bwm-ng
AR: Reduce the traffic, packet count @@ |

AR: Compression @
AR: Bufferization, BDP & l\ Metworlk problems?
f

AR: MTU @
AR: Faster hardware/links @

\ Lots of 5ys%o

AR: Virtual interfaces @ /

One of the major contributors to sys%
B |In many cases, hardware/OS configuration is enough
B |n other cases, application changes might be necessary

System Level (sys%, scheduling)

TOOL: vmstat, mpstat, sar

AR: Reduce the amount of worker threads @

AR Less context switches @ ¢ ~_ Lots of sys%
AR: Scheduling groups, gquanta adjustments, priority @/ \

The symptom of the unbalanced threading
m |ots of voluntary context switches (thread thrashing)
m | ots of involuntary context switches (over-saturation)

System Level (sys%, swapping)

TOOL: top, sar
AR: Constrain the usage of physical memory &
AR: Decrease memory per process .# 1 Swapping? Lots of sys% \
AR Swappiness @ ¢ —

|

AR: Lock pages in memory @

AR: Compress swap i@/

Swapping is the killer for Java performance
B The target is to avoid swapping at all costs
B Swapping out other processes to save the memory is good

System Level (sys%, other)

TOOL: strace, perf, oprofile

AR: Time spent in other

cernel? @ |

AR: Time spent in kernel-space with

AR Kermne

Sometimes kernel Is your enemy

_Lots of sys%

=—| Other kernel? |
ocking @ ¢

bugs?

m Unusual APl choices from the JVM and/or application

B (Un)known bugs

\

System Level (irg%, soft%)

TOOL: mpstat, sar

AR: Interrupt offoad @\ Interacting with devices? Lots of irq%, soft%
AR: IRQ balancing @

B

Usual thing when interacting with the devices
B Sometimes IRQ balancing is required
B Sometimes IRQ balancing is expensive

System Level (ilowait%)

Extensive disk activity? 7"
- s R A _Lots of iowait% f CPU

Mot enough disk/block caches?

Expected contributor with disk I/O
m Watch for disk activity

m \Watch for disk throughput

m \Watch for disk IOPS

System Level (lowait%, disk)

TOOL: iostat, sar
AR: Reduce the disk activity &
AR: HW caching/bufferization Extensive disk activity?
AR: SW caching/bufferization |

- Lots of iowait%

AR: More disks always help (but not yvour budget)

Is that amount of I/O really required?
B Caching, bufferization are your friends
m More (faster) disks can solve throughput/IOPS problems

System Level (lowait%, caches)

TOOL: top, sar

AR: Increase cache memory (reduce other usages) @ | Mot H disk/blac | 3
, , , — —y INOT enoudn dIskEDIoOCk Cachnes! !
AR Get easy on flushi)-es and cache invalidations &@ ¢ ' -

_Lots of iowait% 4

AR More disks always help (but not vour budget)

More caching helps?
B Reduce other physical memory usages, free up for caches
B Trade In performance over consistency

Demo 4

Fixing the iowait problem - next step

System Level (idle%)

Jot enough

| o

QEJtFWEﬁﬁh-ﬁ

enoug

1 R

" CPU?

Lots of idle% / Mot

LC palses:

There are resources, but nobody uses them?
B This is admittedly easy to diagnose

B .. .and very easy to miss

System Level (idle%, threads)

TOOL: vmstat, mpstat

- QW I [@ AR: Get more threads! Parallelize application
HOL enougn oV threads : - -
, ' W W AR Make the scheduler to use physical cores first (affinity)

' o; |)
g Lots of idle% % & AR Turn off CMT / use critical strands

Mot enough RUNNABLE SW threads

\ GC pauses?

Running low-threaded applications on manycore hosts
B The signal for you to start parallelizing
B Or, reduce the number of available HW strands

System Level (idle%, threads)

Mot enough SW threads

TOOL: lock profilers, jstack

Lots of idle% Mot enough RUNMNABLE SW threads — Wait locks? | @ AR: Get rid of the locks
" | @ AR: Use lock-free algos

\ GC pauses?

There are not enough threads ready to run
m Locking?
m \Waiting for something else?

System Level (idle%, GC)

Mot enough SW threads
[Not enough RUNNABLE 5W threads
Lots of idle% / TOOL: -verbose:gc, etc

GC pauses? f & AR More threads for GC
@ AR: Pause-targeted GC-specific tuning

l...-.

Very rare, and surprising case

m Application is highly threaded

m GC is frequently running with low thread count
B The average CPU utilization is low

Demo 5

Fixing the idle problem - next step

tion/

|ICa
JVM Level

Q
Q
<

.»10101010
PS80~
T e =L s L8 c8=o~

OO0 ™ —

© LRS5O, oo —o-o-
o
OO0 ™ r— r—
OO0 —r—
O— 0000
O—0O0OO0O0
— O
—Reeses

O———0O0O00O0O——0O
COoOTrPTE v

O S 8BE = =

— O — O o o oo

Application Level (user%)

J[] = |:]|._||'|'Ii|'|i;| the ¢ r.:|._-:='

CPU? Ak | ots of user® | Algarithmic |']|'-']I']|a|'rr:?

_ Y Memory problems

CPU problems?

Application/JVM is finally busy
B This is where most people start
B This Is where profilers start to be actually useful

Application Level (Memory)

®_ Lots of user% _ [Caches

Memory problems? | :
- h NUMA (NUCA)

_ Memory bandwidth

Memory
B The gem and the curse of von-Neumann architectures
B Dominates most of the applications (in different forms)

Application Level (TLB)

TOOL: Easier to fix and test
TLEB | w AR 0C+UselargePages

| AR: Large page sizes?

Memory problems? |

TLB
B Very important for memory-bound workloads
B “|Invisible” artifact of virtual memory system

Application Level (Caches)

TOOLS: (HWC) oracle solaris studio performance analyz
« AR: Enable/Disable prefetches

Temporal locality w AR: Blocking decompaositions
¥ AR: Shrink data set

Spatial locality W AR 0G+UseCompressedOops

w AR: Denser data structures

Capacity |-
Caches - P y*-.

Memory problems? |

CPU caches: capacity

B Important to hide memory latency (and bandwidth) issues
m Virtually all applications today are memory/cache-bounded

Application Level (Caches)

TOOLS: Java-level profiling + HWC

[Primitives _

& AR: Choose the correct primitive

Caches | p
Memory problems? | . Coherence J' & AR: Optimistic checks

Technigues & AR: Striping

I ¥ AR: Get rid of the communication whatsoever

& AR: False Sharing

CPU Caches: coherence
B |nter-CPU communication Is managed via cache coherence
m Understanding this is the road to master the communication

Application Level (Bandwidth)

Mermory problems? TOOL: busstat, multevent

& AR More faster memory

& AR Multiple channels to main memaory

Memory bandwidih

' AR: Multiple IMCs to handle the load

Memory Bandwidth
B Once caches run out, you face the memory

B Dominates the cache miss performance
B Faster memory, multiple channels help

Demo 6

Solving the concurrency problem - next step

Coherence: Primitives

Plain unshared memory
Plain shared memory

B Provide communication
Volatile

m All above, plus visibility
Atomics

m All above, plus atomicity
Atomic sections

m All above, plus group atomicity
Spin-locks

m All above, plus mutual exclusion
Wait-locks

m All above, plus blocking

Coherence: Optimistic Checks

It Is possible at times to make an optimistic check
m Fallback to pessimistic version on failure
B The optimistic check has less power, but more performant

AtomicBoolean 1sSet ceo}

1f (!isSet.get () &&
isSet.compareAndSet (false, true) {
// one-shot action

Coherence: Optimistic Checks

It Is possible at times to make an optimistic check
m Fallback to pessimistic version on failure
B The optimistic check has less power, but more performant

ReentrantLock lock = ...;
int count = -LIMIT;
while (!lock.tryLock()) {
if (count++ > 0) {
lock.lock();
break;

Coherence: Striping

It is possible at times to split the shared state
B Much less contention on modifying the local state
m The total state Is the superposition of local states

Example: thread-safe counter

synchronized { i++; }
AtomicInteger.inc();
ThreadLocal.set(ThreadlLocal.get() + 1);

AtomicInteger[random.nextInt(count)].inc();

Coherence: No-coherence zone

If you can remove the communication, do that!
B |[mmutability to enforce
B Thread local states

Example: ThreadLocalRandom @ JDK7

B Random: use CAS to maintain the state

B ThreadlLocalRandom: essentially, ThreadLocal<Random>
B Can use plain memory ops to maintain the state

Coherence: (False) Sharing

Communication quanta = cache line

m 32 - 128 bytes long

B Helps with bulk memory transfers, cache architecture
B Coherence protocols working on cache lines

False Sharing
B CPUs updating the adjacent fields?
B Cache line ping-pong!

Demo /

Diagnosing with allocation profiles

JVM Level

W AR Know yvour command-line options

[@ AR: Upgrade to newer [VM?
VM is burning the cycles? | GC

; +
-- -

. Classload
I

_ Lots of user% |

JVM is the new abstraction level
B |nteracts with the application, mangles into application
B VM performance affects application performance

JVM Level (GC)

TOOL: -verbose:gc, -XX:+PrintGCDetails, VisualGC

#AH: Tune Java heap, generations, and regions
#AF{: Thread stack size
| @ AR: (UnJusual tuning

WM is burning the cycles? GC Jr

GC
m Most usual contender in JVM layer
m |Lots of things to try fixing (not covered here, see elsewhere)

JVM Level (JIT)

VM is burning the cycles? TOOL: PrintCompilation, MXBeans
| - ' . | -sarver
T .' .:*‘-‘-IAF{: Choose the compiler [client
AL | 20G+TieredCompilation
| .
I AR: Low-level tuning
| @ AR: Go to Open)DK ML and ask
JIT

m Very cool to have your code compiled
B Sometimes it's even cooler to get the code compiled better

JVM Level (Classload)

TOOL: verbose:class, MXBeans

& AR: Turn off bytecode verification: --no-verify

VM is burning the cycles? .
| Classload |- @AH: Turn on COS: -Xshare:on
) % & AR: Recompile your Java code with updated javac
Hfl-uﬁ_ & AR: Increase the size of system dictionary
| @ AR: Repackage classes into small amount of larger JARs
Classload

B Important for startup metrics; not really relevant for others
B Removing the loading obstacles is the road to awe

Demo 8

Fixing the allocation problem

Application Level

Algorthmic complexty

. n | | [Caching/Memoizing
| Algorithmic problems? | -
%_ Lots of user% - 1. Busy-waiting

Batching and work scheduling

Application level

B |[n many, many cases, silly oversights in algorithms use
B Cargo cult of approaches, patterns, code reuse

Application Level (Algos)

TOOL: Profilers + Brain

Algorithmic complexity | & AR: Pick the algorithm with lower complexity
| & AR: Pick the algorithm with lower constants

Algorithmic problems? |

Algorithmic Complexity
B Figuring out the straight-forward code has huge complexity
B Sometimes, the low-0O code is slower than high-O code

Application Level (Caching)

| TOOL: Profilers + Brain

& AR: Memoize the results where appropriate

Caching/Memoizing

Algorithmic problems? - & AR Use new objects where appropriate

& AR: For (distributed) caching the record size should be smaller

Application Caching
B Seems to be the answer to most performance problems?
m |n fact, blows up the footprint, heap occupancy, etc

Application Level (Busy-waits)

TOOL: Profilers + Brain
Busy-waiting | @ AR: Replace polling with timed waits

Algorithmic problems?

& AR Replace spinloops with spinthen-block

Application Busy-Waits
B The natural instinct: blocked waits (with helping)
m For latency-oriented: busy-waits are profitable

Demo 9

Analyzing with execution profiles

uArch Level (CPU)

_Lots of user%

Mot enough CPU frequency?

-

CPU problems? Mot enough Execution Uﬂits?-:
_ ILP depleted? _

CPU
B Most applications are not getting here
B A very simple capacity problem

uArch Level (CPU, frequency)

& AR: Overclocking

Mot enough CPU frequency? -~

& LR CPU frequency governors

CPU problems? |

CPU Frequency
B Exception: affects the memory/speculating performance
B How many servers out there are running with “ondemand”?

uArch Level (CPU, EU)

TOOL: (HWC), vtune, solstudio

o & AR: Going for native platfrom-specific code
Specialized code ~

.] , , e AR IT intrinsics
CPU problems? Mot enough Execution Units? | @
| . |
% « AR: cryptoaccelerators
- AR GPU

Specialized Hardware

| ¥ AR: Moar CPUs!

CPU, Execution Units

B Heavily-threaded hardware shares the CPU blocks
B Easy to run out of specific units with the homogeneous work

uArch Level (CPU, ILP)

CPU problems? rooL: (HWC) solstudio, vtune

~ ILP depleted? [@ AR: less branches?
@ AR: more ILP

Instruction Level Parallelism
m CPUs speculate aggressively
B Exposing less dependencies in the code help to speculate

iNng

Thoughts

"
O
O

SR e iy PS8 ~0~
000~ VTP EL — S Se=8c80o~
Ow .lo.loo-l-lnlooalalo. “|1%\1101010.|

OO0 ——
=Nl
O—0O00O
O—OO0O

—
-Rses5°

O———0O0O00O0O——0O
COoOTrPTE v

O S 8BE = =

— O — O o o oo

TOOL: netstat, sar, iptraf, bwm-ng
AR: Reduce the traffic, packet count{
AR: Compression @

AR: Bufferization, BDPig

Network problems?

AR: MTU @
AR: Faster hardware/links@
AR: Virtual interfaces@
TOOL: vmstat, mpstat, sar

AR: Reduce the amount of worker threads

AR: Less context switches @

AR: Scheduling groups, quanta adjustments, priority@
TOOL: top, sar

AR: Constrain the usage of physical memory@

AR: Decrease memory per process igg

Swapping?

X Scheduling overheads?«

Lots of sys%

AR: Swappiness &
AR: Lock pages in memoryg

AR: Compress swap @&

TOOL: strace, perf, oprofile
AR: Time spent in other kernel?

X Other kernel?

AR: Time spent in kernel-space with locking@
AR: Kernel bugs? &

TOOL: mpstat, sar
AR: Interrupt offloadge \ Interacting with devices?

Lots of irq%, soft%

AR: IRQ balancing@ /
TOOL: iostat, sar
AR: Reduce the disk activitygy \
AR: HW caching/bufferization@@ | Extensive disk activity?
AR: SW caching/bufferizationf
AR: More disks always help (but not your budget)

Lots of iowait%

TOOL: top, sar
AR: Increase cache memory (reduce other usages)ig

Not enough disk/block caches?

AR: Get easy on flush()-es and cache invalidationsg

AR: More disks always help (but not your budget)

Original mindmap

~_Aleksey Shipile\v

aleksey.shipilev@oracle.com ,

Original mindmap

~\ Sergey Kuksenko

sergey.kuksenko@oracle.com ,
GC parts

—— —_Vladimir Ilvanov

Credits

vladimir.x.ivanov@oracle.con ,

Partial translation to Englist

~_lgor Maznitsa

igor.maznitsa@igormaznitsa.com ,
TOOL: vmstat, mpstat
AR: Get more threads! Parallelize applicatiod@y

Not enough SW threads

AR: Make the scheduler to use physical cores first (affinity@y
AR: Turn off CMT / use critical strands@ j
TOOL: lock profilers, jstack

AR: Get rid of the locks & \ Wait locks?
~_ Not enough RUNNABLE SW threads

Lots of idle%

AR: Use lock-free algos @) /

Network latencies

TOOL: -verbose:gc, etc
AR: More threads for GC&@ \ GC pauses?

AR: Pause-targeted GC-specific tuning g /

Lots of user%

JVM is burning the cycles?}

@ AR: Know your command-line options

@ AR: Upgrade to newer JVM?

TOOL: -verbose:gc, -XX:+PrintGCDetails, VisualGC
@ AR: Tune Java heap, generations, and regions

@ AR: Thread stack size

/ TOOL: -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps, -XX:+PrintGCDateStamps,
-XX:+PrintHeapAtGC, -XX:+PrintTenuringDistribution, -Xloggc=<file>

-XX:+UseSerialGC

The only GC supports NUMA
-XX:+UseParallelGC [Collects young gen in parallel
\ Collects old gen in single thread

Collects young gen in parallel

GC
HotSpot GCs

-XX:+UseParallelOIdGC i
A__ Collects old gen in parallel

-XX:+UseConcMarkSweepGC
Replaces CMS
Set region size: -XX:G1lHeapRegionSize=#
-XX:+UseG1GC

@ AR: (Un)usual tuning [

Extensive tuning opportunities, see elsewhere

Algorithmic problems?

Set the maximum pause for GC: -XX:MaxGCPauseMillis=#
\ k Set the usual time between GCs: -XX:GCPauselntervalMillis=#

-XgcPrio:deterministic

JRockit GCs
-XpauseTarget=#

TOOL: verbose:class, MXBeans

@ AR: Turn off bytecode verification: --no-verify
@ AR: Turn on CDS: -Xshare:on
@ AR: Recompile your Java code with updated javac

Classload

@ AR: Increase the size of system dictionary

@ AR: Repackage classes into small amount of larger JARs
TOOL: PrintCompilation, MXBeans
-server

@ AR: Choose the compiler |/ -client

-XX:+TieredCompilation

JIT

@ AR: Low-level tuning
& AR: Go to Open)DK ML and ask
TOOL: Profilers + Brain
Algorithmic CompIeXity[& AR: Pick the algorithm with lower complexity

@ AR: Pick the algorithm with lower constants
TOOL: Profilers + Brain

! @ AR: Memoize the results where appropriate

AR Use new objects where appropriate

Caching/Memoizing

Memory problems?

@ AR: For (distributed) caching the record size should be smaller
TOOL: Profilers + Brain
Busy-waiting [@ AR: Replace polling with timed waits

\ @ AR: Replace spinloops with spin-then-block

Batching and work scheduling

TOOL: Easier to fix and test; or, use HWCs to diagnose
TLB / @& AR: -XX:+UselargePages
AR: Large page sizes?

TOOLS: (HWC) oracle solaris studio performance analyzer, vtune
@ AR: Enable/Disable prefetches

@ AR: Blocking decompositions
@ AR: Shrink data set
Spatial locality [T@ AR: -XX:+UseCompressedOops
@ AR: Denser data structures
TOOLS: Java-level profiling + HWC

Plain non-shared memory

Temporal locality

Capacity

Plain shared memory

Volatile: enforcing visibility

Atomics: enforcing atomicity

Primitives] i)
Spin-loops: enforcing mutual exclusion

Spin-locks
synchronized
j.u.c.RL

Caches

Wait-locks

Consistency

@ AR: Choose the correct primitive |/ Expected contention

Expected contention overlap

Coherence

Try to optimistically check for easier condition

@ AR: Optimistic checks . i .
“__Fallback to pessimistic (costly) operation otherwise

Locks

@AR: Striping / Queues

Counters

Techniques

Immutability

@ AR: Get rid of the communication whatsoever |/ Distinct copies

\ Thread Locals

) Object Padding
@ AR: False Sharing
“__ Split the objects, and pad again

TOOL: numastat

@ AR: Communication cost is the major contender

Fractal structure

N__ ...not only between CPU packages, but between cores, hosts, clouds

NUMA (NUCA)

@ AR: Locality of communication
& AR: -XX:+UseNUMA
@ AR: Thread/Memory Affinity
TOOL: busstat, multevent
Memory bandWIdthﬁ AR: More faster memory
AR Multiple channels to main memory
@ AR: Multiple IMCs to handle the load

@ AR: Overclocking
Not enough CPU frequency? — _

\ @ AR: CPU frequency governors
TOOL: (HWC), vtune, solstudio

@ AR: Going for native platfrom-specific code
Specialized code ,~— _

< @ AR: JIT intrinsics

Not enough Execution Units?

CPU problems?

o @ AR: cryptoaccelerators
Specialized Hardware ,~— _

< @ AR: GPU

& AR: Moar CPUs!
TOOL: (HWC) solstudio, vtune
ILP depleted? [i AR: less branches?

& AR: more ILP

DEVOX
the java™ community conference

PS8 —0o —
-rS P88 o~

.MU.'UO-'—I-'O”.UI—lnu. “|100\.| — O —0O— QO —

00
0100
1000
0001

1
10
ol

110
0 01

Obﬁnﬂﬂdpdmf
oRDRDIXTO-
= o\

o0
~—e—5883¥%—
o
O -

O S8BT ==

— O —O— 0O —000
S~ QB IRR

O r— O — OOt
— O —

Definitions

Utilization = how busy the resource is?

Resource Busyl1me

Utilization =
Totall'1me

Idle = how free the resource is?

IdleTirme =1 — Utilization

Efficiency = How much time iIs spent doing useful work?
B Not really possible to measure
m High Utilization '= High Efficiency

5 t * »’, Lr B

Definitions

SpeedUp = Ais N times faster than B means:

time(B) throughput(A)

SpeedUp = =
peeasp time(A) throughput(B)

Definitions

%Boost = A i1s P% faster than B means:

n

100%
Boost% = (SpeedUp — 1) * 100%

SpeedUp =1 A

time(B) — time(A)

Boost% =
005t % time(A)

Boost — throughput(A) — throughput(B)

throughput(B)

Definitions

Performance
= Scalar Field in Config Space

P:K">R

Scalability
= Gradient of PSF

S=VP

Resource Scalability
= specific component in SC vector
oP

=Y
“OR,

source: http://en.wikipedia.org/wiki/Gradient

~""_9)

http://en.wikipedia.org/wiki/Gradient

Optimization Task

The configuration space can be humongous
B You don't want to traverse it all
m Or, you do want to exhaustive search if space is small

Random walks are inefficient
B Need to estimate the gradient in all N dimensions
B Means 2*N experiments per each step

Local estimates to rescue!
m Can predict if P would grow, should we add specific resource
B This is where the bottleneck analysis steps in

First step (mistakes)

We frequently hear:

B “| see the method foo() is terribly inefficient, let's rewrite it”

m “| see the profile for bar() is terribly high, at 5%, let's remove it”

m “| think our DBMS Is a slowpoke, we need to migrate to [buzzword]”

Correct answer:

B Choose the metric!

m Make sure the metric is relevant!

B Your target at this point is improving the metric

Second step mistakes

“l can see the method foo() is terribly inefficient, let's
rewrite!”

m ...what if the method is not used at all
m .. .what If it accounts for just a few microseconds of time
m ...what if it does account for significant time, but...

Actually, not a bad idea
m .. .as the part of controlled experiment
m .. .if the changes are small, isolated, and painless to make

Second step mistakes

“l can see the method bar() accounts for 5% of time,
let's remove it!”

m ... what if the CPU utilization is just 6.25%?7
m ...what if this method pre-computes something reused later?
m .. .what if this method is indeed problematic, but...

Second step mistakes

“l think our database is the problem! Let's migrate to
[buzzword]!”

m ...what if the you just depleted the disk bandwidth?
m ...what if your IT had shaped the network connection?
m ...what if your poor database just needs a cleanup?
m ...what if the database is indeed the bottleneck, but...

TLBs Detalled

Virtual memory operates on virtual addresses
m But hardware needs physical addresses to access memory
B Needs virtual = physical translation
B Tightly cooperates with OS (walks through page tables)

Extreme cost to do a single translation
B Happens on each memory access
m | et's cache the translated addresses!
B TLB = Translation Look-aside Buffer
® Granularity: single memory page

TLB caches should be ultra-fast - TLBs are very small
B The solution is the other way around: larger pages

