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Safe Harbor / Tuxaa N'aBaHb

Anything on this or any subsequent slides may be a lie. Do
not base your decisions on this talk. If you do, ask for
professional help.

Bcé uto yrogHO Ha 3TOM cnaije, Kak 1 Ha BCex CiefyoLnx,
MOXeT 6bITb BpaHbEM. He npvHUMaliTe peLlleHunin Ha
OCHOBaHMWM 3TOro Aoknaga. Ecav Bcé-Takm pewunte NpUHSATD,
TO HallMUTe NpodpeccnoHanos.

Q redhat



This Message Is Brought To You By

GARBAGE COLLE . .
HANDBOGKS having first read the «GC

B 5 Handbook» is a waste of time, and
regurgitating known stuff

THE ‘ﬁé m IMHO, discussing GC without

m It may appear that $name GCis a
super-duper-innovative, but in fact
many GCs reuse (or reinvent) ideas
from that textbook

O redhat
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Overview: Landscape

Young GC

Old GC

Serial, Parallel:

Copy

Mark

Compact
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Overview: Landscape

Young GC Old GC

Serial, Parallel:

Copy Mark Compact
CMS:
Still a pause :( Sopy Concurrent Mark I Conc. Sweep Does not solve
e . Init Mark Finish Mark et - fragmentation :(
G1:
Smaller, adjustable, Copy Concurrent Mark Compact Smaller, adjustable,
but still a pause :( ., = | L but still a pause :(
Tt i Init Mark Finish Mark e -
Shenandoah:
Conc. Partial Concurrent Mark I Conc. Compact
Init Mark Finish Mark

O redhat



Overview: Heap Structure

Shenandoah is a regionalized GC

m Heap division, humongous regions, etc
are similar to G1

m Collects garbage regions first by default

m Not generational by default, no
young/old separation, even temporally

m Tracking inter-region references is not
needed by default

O redhat



Overview: Cycle

Application active

Three major phases:

O redhat



Overview: Cycle
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Three major phases:
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Overview: Cycle

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active l Application active Application active Application Active | Application Active
Init Mark Final Mark Init-UR Final-UR

Three major phases:
1. Snapshot-at-the-beginning concurrent mark
2. Concurrent evacuation

3. Concurrent update references (optional) -
5 redhat



Overview: Usual Log

LRUFragger, 100 GB heap, ~ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 3.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms
Pause Final Update Refs 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms
Q redhat
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Concurrent Mark: Reachability

To catch a garbage, you have to thinklike-a garbage

know if there are references to the object
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Concurrent Mark: Reachability

To catch a garbage, you have to thinklike-a garbage

know if there are references to the object

Three basic approaches:
1. No-op: ignore the problem, and treat everything as
reachable (see Epsilon GC)
2. Mark-*: walk the object graph, find reachable objects,
treat everything else as garbage
3. Reference counting: count the number of references,

and when refcount drops to 0, treat the object as garbage
Q redhat



Concurrent Mark: Three-Color Abstraction

Assign colors to the objects:
1. White: not yet visited
2. Gray: visited, but references are not scanned yet
3. Black: visited, and fully scanned

Q redhat



Concurrent Mark: Three-Color Abstraction

Assign colors to the objects:
1. White: not yet visited
2. Gray: visited, but references are not scanned yet
3. Black: visited, and fully scanned

Daily Blues:
«All the marking algorithms do is
coloring white gray, and then coloring gray black»

Slide 19/75. «Shena ‘ redhat



Concurrent Mark: Stop-The-World Mark

O

When application is stopped, everything is trivial!
Nothing messes up the scan...
Qredhat



Concurrent Mark: Stop-The-World Mark

O

Found all roots, color them Black,
because they are implicitly reachable
Qredhat



Concurrent Mark: Stop-The-World Mark

O

References from Black are now Gray,
scanning Gray references
Qredhat



Concurrent Mark: Stop-The-World Mark

g

Finished scanning Gray, color them Black;
new references are Gray
Qredhat



Concurrent Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
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Concurrent Mark: Stop-The-World Mark

g

Finished: everything reachable is Black;
all garbage is White
Qredhat



Concurrent Mark: Mutator Problems

With concurrent mark
everything gets complicated:
the application runs and
actively mutates the object
graph during the mark

We contemptuously call it
mutator because of that

Q redhat



Concurrent Mark: Mutator Problems

e

Wavefront is here,
and starts scanning the references in Gray object...

Q redhat



Concurrent Mark: Mutator Problems

C
*

*

*

*

Mutator removes the reference from Gray...
and inserts it to Black!
Qredhat



Concurrent Mark: Mutator Problems
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...or mutator inserted the reference to
transitively reachable White object into Black
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Concurrent Mark: Mutator Problems

...or mutator inserted the reference to
transitively reachable White object into Black
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Concurrent Mark: Mutator Problems

Mark had finished, and boom: we have reachable White
objects, which we will now reclaim, corrupting the heap

Q redhat



Concurrent Mark: Mutator Problems

new

Another quirk: created new new object,
and inserted it into Black
Qredhat



Concurrent Mark: SATB

oot

o‘ocy—é

Color all removed referents Gray

Q redhat



Concurrent Mark: SATB

oot
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Concurrent Mark: SATB

oot
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Finishing...

Q redhat



Concurrent Mark: SATB
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Done!

Q redhat



Concurrent Mark: SATB

* |
*
*
*
*
*
*
*
*
new

«Snapshot At The Beginning»:
marked all reachable at mark start

Q redhat



Concurrent Mark: SATB Barrier, Fastpath

# read TLS flag
movsbl 0x378(%r15),%r10 # flag = *(TLS + 0z378)

# 2f that flag 2s up...
test  %r10,%r10 #4f (flag) ...
jne OMG-SATB-ENABLED

# perform the actual store to Jri2 and offset Ox42
mov %hr11,0x42(%r12) # *x(obj + 0x42) = ri1l

O redhat



Concurrent Mark: SATB Barrier, Midpath

OMG-SATB-ENABLED:
# read the old value from the field
mov 0x2c (%rbp) ,%ri0d # oldval = *(obj + Oz2c)

# take the the head of thread-local buffer
mov 0x388(%r15),%ri1 # qhead = *(TLS + 0x2388)

# then tens of instructions that add old value
# to local buffer, check for overflow, call into
# VM slowpath to process the thread-local buffer, etc.

O redhat



Concurrent Mark: Two Pauses

Init Mark:
1. Stop the mutator to avoid races
2. Color the rootset Black
3. Arm SATB barriers

Final Mark:
1. Stop the mutator to avoid races
2. Drain the SATB buffers
3. Finish work from SATB updates

Q redhat



Concurrent Mark: Two Pauses

Init Mark:
1. Stop the mutator to avoid races
2. Color the rootset Black <— most heavy-weight
3. Arm SATB barriers

Final Mark:
1. Stop the mutator to avoid races
2. Drain the SATB buffers
3. Finish work from SATB updates «+— most heavy-weight

Q redhat



Concurrent Mark: Barriers Cost'

Throughput hit, %

SATB
Cmp || -2.8
Cps
Cry
Der || -1.6
Mpg
Smk
Ser
Sfl
Xml || -2.6

TPerformance compared to STW Shenandoah with all barriers disabled @ rednat



Concurrent Mark: Observations

1. Throughput-wise, well engineered STW GC would beat
well engineered concurrent GC

Translation: If you don't care about GC pauses, just use
good STW GC

Q redhat



Concurrent Mark: Observations e

1. Throughput-wise, well engineered STW GC would beat
well engineered concurrent GC

Translation: If you don't care about GC pauses, just use
good STW GC

2. Barrier costs are there even without GC cycles happening

Translation: Running the application that causes no GC
cycles? Less sophisticated GC gives less overheads

Q redhat



Concurrent Copy: Stop-The-World

Problem:
there is the object, the
object is referenced
from somewhere, need
to move it to new
location

"From® Tor
space H space
:

Q redhat



Concurrent Copy: Stop-The-World

Step 1: Stop The World,
evasive maneuver to
distract mutator from
looking into our mess

Tor
space H space
:

"From"

Q redhat



Concurrent Copy: Stop-The-World

"From"
space

"Ton
space

Step 2:
Copy the object with all
its contents

O redhat



Concurrent Copy: Stop-The-World

Step 3.1:
Update all references:

Forwarding """ - save the pointer that

x=1 .......? ..... > x=1 fOI’W&I’dS tO the copy
y=2 . > y=2

“"Erom" z=3 -------% ----- > z=3 o

space : space

Q redhat



Concurrent Copy: Stop-The-World

Step 3.2:
: Update all references:
v N S walk the heap, replace
PP U SV p all refs with fwdptr
PP U SV p destination
"From" T > -3 o

Q redhat



Concurrent Copy: Stop-The-World

"From"
space

Forwarding

"Ton
space

Step 3.2:
Update all references:
walk the heap, replace

all refs with fwdptr
destination

Q redhat



Concurrent Copy: Stop-The-World

Everything is fine in the
world, set the mutators
free! Done!

"From® Tor
space H space
:

Q redhat



Concurrent Copy: Mutator Problems

With concurrent
copying everything
gets is significantly

harder: the application
writes into the objects
while we are moving
the same objects!

Hem cmbicna onuceieame npoucxodawee,
noamomy Hanuwy: "Y Hac 8cé xopowo”..

http://vernova-dasha.livejournal.com/77066.html

Q redhat


http://vernova-dasha.livejournal.com/77066.html

Concurrent Copy: Mutator Problems

While object is being
moved, there are two

ceererbeeans copies of the object,
v OO SV p and both are
e SRS SN reachable!
o T
e : coace

Q redhat



Concurrent Copy: Mutator Problems

"From"
space

"Ton
space

Thread A writes y =4
to one copy, and
Thread B writes x = 5
to another. Which copy
is correct now, huh?

Q redhat



Concurrent Copy: Java Analogy

class VersionUpdater<T, V> {
final AtomicReference<T> ref = ...;

void writeValue(V value) {
do {
T 0ldObj = ref.get();
T newObj = copy(oldObj);
new0bj.set (value) ;
} while (!'ref.compareAndSet (oldObj, new0Obj));

}

+
Everyone wrote this thing about a hundred times...

O redhat




Concurrent Copy: Brooks Pointers

Idea:

Brooks pointer: object
version change with

additional atomically
T changed indirection

"From® Tor
space H space
:

Q redhat



Concurrent Copy: Brooks Pointers

"From"
space

Step 1:
Copy the object,
initialize its forwarding
pointer to self

"Ton
space

Q redhat



Concurrent Copy: Brooks Pointers

' We now have the copy

of the object, but no

one knows about it
y=2 i y=2

"From" =3 i =3 "“To"

space E space

Q redhat



Concurrent Copy: Brooks Pointers

Step 2:
CAS! Atomically install
forwarding pointer to
point to new copy. If

Fwd Ptr Fwd Ptr

CAS had failed,
- _ discover the copy via
o - s . forwarding pointer

space H space
:

Q redhat



Concurrent Copy: Brooks Pointers

Step 3:
Rewrite the references
at our own pace in the

Fwd Ptr Fwd Ptr

rest of the heap
y=2 : y=2

"From" =3 i =3 "“To"

space E space

Q redhat



Concurrent Copy: Brooks Pointers

"From"
space

"Ton
space

If somebody reaches
the old copy via the old
reference, it has to
dereference via fwdptr
and discover the actual
object copy!

Q redhat



Concurrent Copy: Brooks Pointers

Step 4:
All references are
updated, recycle the

Fwd Ptr Fwd Ptr

o from-space copy
y=2 : y=4

"From" =3 i Z=3 "To"

space E space

Q redhat



Concurrent Copy: Brooks Pointers

"From"
space

Fwd Ptr

Done!

"Ton
space

Q redhat



Write Barriers: Motivation

To-space invariant:
Writes should happen
in to-space only,
otherwise they are lost
when cycle is finished

"From"
space ' space
H

Q redhat



Write Barriers: Fastpath

# read the thread-local flag
movzbl 0x3d8(%r15),%r1ild # flag = *(TLS + 0z3d8)

# 2f that flag 1s set, then...
test  riid,’%riid # 1f (flag) ...
jne OMG-EVAC-ENABLED

# make sure we have the to-copy
mov -0x8(%rbp) ,%r10 # obg = *(obj - 8)

# store into to-copy 710 at offset 0z30
mov %r10,0x30(%r10) # *x(obj + 0x30) = r10

O redhat



Write Barriers: Slowpath

stub Write(val, obj, offset) {

if (evac-in-progress && // in evacuation phase
in-collection-set(obj) && // target is in from-space
fwd-ptrs-to-self(obj)) { // no copy yet
val copy = copy(obj);

*(copy + offset) = val; // actual write
if (CAS(fwd-ptr-addr(obj), obj, copy)) {
return; // success!
}
}
obj = fwd-ptr(obj); // write to actual copy

*(obj + offset) = val; // actual write

Q redhat



Write Barriers: GC Evacuation Code

stub evacuate(obj) {
if (in-collection-set(obj) && // target is in from-space
fwd-ptrs-to-self(obj)) { // no copy yet
copy = copy(obj);
CAS(fwd-ptr-addr(obj), obj, copy);

Termination guarantees:
Always copy out of collection set.
Double forwarding is the GC error.

Q redhat



Write Barriers: Barriers Cost'’

Throughput hit, %

SATB | WB
Cmp || -2.8 | -2.9
Cps -1.5
Cry
Der || -1.6 | -2.5
Mpg -9.9
Smk -1.7
Ser -2.6
Sfl
Xml | -2.6 | -2.8

TPerformance compared to STW Shenandoah with all barriers disabled @ rednat



Write Barriers: Observations

1. Shenandoah needs WB on all stores

Translation: Field stores, locking the object, computing
the identity hash code the first time, etc - all require
write barriers

Q redhat



Write Barriers: Observations K8 §

1. Shenandoah needs WB on all stores

Translation: Field stores, locking the object, computing
the identity hash code the first time, etc - all require
write barriers

2. Application steps on WB slowpath very rarely: only
during evacuation phase, on a few evacuated objects, on
those objects that were not yet visited by GC

Translation: In practice, WBs have low overhead

Q redhat



Read Barriers: Motivation

Heap reads have to (?)
dereference via the
forwarding pointer, to
discover the actual
object copy

"From"
space H space
'

Q redhat



Read Barriers: Implementation

# read barrier: dereference via fwdptr
mov -0x8(%r10) ,%r10 # obj = *(obj - 8)

# heap read!
mov 0x30(%r10),%r10d  # wal = *(obj + 0z30)

Q redhat




Read Barriers: Implementation

# read barrier: dereference via fwdptr
mov -0x8(%r10) ,%r10 # obj = *(obj - 8)

# heap read!
mov 0x30(%r10),%r10d  # wal = *(obj + 0z30)

Benchmark Score Units
base +3 RBs
time | 4.6 +o.1| 5.3 +o1|ns/op
Li-dcache-loads | 12.3 102 |15.1 +o.3 | #/0p
cycles | 18.7 +o03|21.6 +o3 | #/0p
instructions | 26.6 +o.2|30.3 +o.s|#/0p

O redhat



Read Barriers: Barriers Cost'

Throughput hit, %
SATB| WB| RB

Cmp || -2.8|-2.9| -9.8
Cps -1.5|-11.6
Cry

Der | -1.6 |-2.5| -8.9
Mpg -9.91-10.9
Smk -1.7| -0.7
Ser -2.6| -9.4
Sfl -12.2
Xml || -2.6 | -2.8 | -13.7

TPerformance compared to STW Shenandoah with all barriers disabled @ rednat



Read Barriers: Observations

1. RBs are cheap, but there are lots of them
Translation: cannot make RBs much heavier?

2Use tagged/colored pointers seems odd because of this @ rednat



Read Barriers: Observations K8 §

1. RBs are cheap, but there are lots of them
Translation: cannot make RBs much heavier?

2. The observed overhead depends heavily on optimizers
ability to eliminate, hoist and coalesce barriers

Translation: high-performance GC development
assumes optimizing compiler work

2Use tagged/colored pointers seems odd because of this @ rednat



CMP: Trouble

What if we compare

from-copy and to-copy

al | a2 themselves?
x=1 : x=1
- (al == a2) — 777
y=2 y=2
"From" z=3 z=3 "To"
space E space

Q redhat



CMP: Trouble

What if we compare
from-copy and to-copy

themselves?
a1 | 2 (al == a2) — 777
x=1 x=1
o P But machine ptrs are
o . : . not equal... Oops.
space E space

Q redhat



CMP: Exotic Barriers

Having two physical copies of the same logical object,
«==» has to compare logical objects

# compare the ptrs; if equal, good!
cmp hrex, fhrdx # 4if (al == a2) ...
je EQUALS

# false negative? have to compare to-copy:
mov -0x8 (Y%rex) ,%rcx # al = *(al - 8)
mov -0x8(%rdx) ,%rdx # a2 = *(a2 - 8)

# compare again:
cmp hrex, hrdx # if (al == a2) ...

Q redhat



CMP: Barriers Cost'’

Throughput hit, %

SATB| WB| RB| CMP
Cmp || -2.8|-2.9| -9.8]-4.0
Cps -1.5|-11.6
Cry -4.3
Der || -1.6|-2.5| -8.9
Mpg -9.9-10.9
Smk -1.7] -0.7
Ser -2.6| -9.4
Sfl -12.2
Xml || -2.6 | -2.8 | -13.7

TPerformance compared to STW Shenandoah with all barriers disabled

O redhat



CMP: Observations

1. Full-fledged «==» reference comparisons are rare, and
special kinds of comparisons are well-optimized

Translation: cmp barriers are not affecting much,
a == null does not require barriers, etc.

Q redhat



CMP: Observations Q20

1. Full-fledged «==» reference comparisons are rare, and
special kinds of comparisons are well-optimized

Translation: cmp barriers are not affecting much,
a == null does not require barriers, etc.

2. There is also the problem with reference CASes, but the
failure there is also rare

Translation: if CAS had failed, you have much larger
performance problems...

Q redhat



Overall: Barriers Cost'

Throughput hit, %

SATB| WB| RB| CMP | TOTAL
Cmp || -2.8|-2.9| -9.8[-4.0] -18.8
Cps -1.5|-11.6 -14.6
Cry -4.3| -4.3
Der | -1.6 | -2.5| -8.9 -13.2
Mpg -9.9-10.9 -21.3
Smk -1.7] -0.7 -2.6
Ser -2.6| -9.4 -13.4
Sfl -12.2 -15.0
Xml || -2.6 | -2.8 | -13.7 -18.9

TPerformance compared to STW Shenandoah with all barriers disabled @ rednat



Overall: Observations

1. Shenandoah barriers do not require special hardware or
special OS support!

Translation: No need for kernel patches, pricey
hardware, vendor lock-in distros, etc

Q redhat



Overall: Observations e

1. Shenandoah barriers do not require special hardware or
special OS support!

Translation: No need for kernel patches, pricey
hardware, vendor lock-in distros, etc

2. The throughput hit is mostly acceptable, taking note the
latency improvements achieved

Translation: Latency-throughput tradeoff is here. Do not
need low latency? Use STW GC.

Q redhat



Intermezzo



Intermezzo: Generational Hypotheses, Weak

Dying
Probability
7'\

Weak hypothesis:
most objects die young

Weak

» Age

Q redhat



Intermezzo: Generational Hypothesis, Strong

Dying
Probability
7'\

Strong hypothesis:

the older the object,

the less chance it has
to die

Weak Strong

» Age

Q redhat



Intermezzo: Generational Hypothesis, Strong

Dying
Probability
7'\

Strong hypothesis:

the older the object,

the less chance it has
to die

In-memory LRU-like
caches are the prime
counterexamples

» Age

Q redhat



Intermezzo: LRU, Pesky Workload

Very inconvenient workload for simple generational GCs
(those that follow weak GH, and trust in strong GH)

1. Appears to be weak GH workload in the beginning

2. As cache population grows, Live Data Set (LDS) grows too.
LDS is measured in gigabytes - it is a cache, after all

3. As cache gets full, old objects start to die, violating strong
GH, much to naive GC surprise

4. GC heuristics trips over and burns
Qredhat



Intermezzo: The Simplest LRU

The simplest LRU implementation in Java?

Q redhat



Intermezzo: The Simplest LRU

The simplest LRU implementation in Java?

cache = new LinkedHashMap<>(size*4/3, 0.75f, true) {
@0verride
protected boolean removeEldestEntry(Map.Entry<> eldest) {
return size() > size;

};

O redhat



Intermezzo: Testing

Boring config:

1. Latest improvements in all GCs: shenandoah/jdk10 forest
Decent multithreading: 8 threads on 16-thread i7-7820X
Larger heap: -Xmx100g -Xms100g
90% hit rate, 90% reads, 10% writes
Size (LDS) = 0..100% of -Xmx

e W

Varying cache size = varying LDS = make GC uncomfortable

Q redhat



Intermezzo: Pauses vs. LDS
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Parallel

CMS

Shenandoah

=
SN

=
<

f
9
b

Pause time, sec (all safepoints)
8
s

103

=
9
L

0

20 40 60 80 1000 20 40 60 80 1000

20 40 60 80 1000 20 40 60 80 100
Live Data Size, % of heap

Q. redhat.



Intermezzo: Pauses vs. LDS

Gl Parallel CMS Shenandoah
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Intermezzo: Pauses vs. LDS

Gl Parallel CMS Shenandoah
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Intermezzo: Pauses vs. LDS

Gl Parallel CMS Shenandoah
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Intermezzo: Perf vs. LDS
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Advanced: Major Assumption

Concurrent GC relies on collecting faster than applications
allocate: applications always see there is available memory

m In practice, this is frequently true: applications rarely do
allocations only, GC threads are high-priority, there
enough space to absorb allocations while GC is running...

m But you have to also take care about unhappy paths!

Q redhat



Advanced: Living Space

Problem:
Concurrent GC needs breathing room to succeed

Things that help:
m Aggressive heap expansion: prefer taking more memory
m Immediate garbage shortcuts: free memory early
m Partial collections: collect easy parts of heap first
m Mutator pacing: stall allocators before they hit the wall

Q redhat
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m Aggressive heap expansion: prefer taking more memory
m Immediate garbage shortcuts: free memory early
m Partial collections: collect easy parts of heap first
m Mutator pacing: stall allocators before they hit the wall

Q redhat



Footprint: Internals

Usual active footprint overhead: 3..15% of heap size

1. Java heap: forwarding pointer (8 bytes/object)

2. Native: 2 marking bitmaps (1/64 bits per heap bit)
3. Native: $N_CPU workers (~ 2 MB / GC thread)

4. Native: region data (=~ 1 KB per region)

Q redhat
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Footprint: Internals

Usual active footprint overhead: 3..15% of heap size

But all of that is totally dwarfed
.oy GC heap sizing policies

Example: -XX:+UseShenandoahGC -Xmx100G means:
~ 90..95 GB accessible for Java objects,
~ 103 GB RSS for GC parts

Q redhat



Footprint: Microservice Example
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Footprint: Microservice Example
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Footprint: Microservice Example
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Footprint: Microservice Example
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Footprint: Shenandoah’s M.O.

«We shall take all the memory when we need it,
but we shall also give it back when we don’t»

Start with -Xms committed memory

Expand aggressively under load up to -Xmx

Stay close to -Xmx under load

Uncommit the heap and bitmaps down to zero when idle
Do periodic GCs to knock out floating garbage when idle

uhwh =

Tunables: -Xms, -Xmx, periodic GC interval, uncommit delay
Qredhat



Immediates: Living Space

Problem:
Concurrent GC needs breathing room to succeed

Things that help:
m Aggressive heap expansion: prefer taking more memory
m Immediate garbage shortcuts: free memory early
m Partial collections: collect easy parts of heap first
m Mutator pacing: stall allocators before they hit the wall

Q redhat



Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7)  Total Garbage: 76798M

GC(7)  Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

Exploiting weak gen hypothesis:

Q redhat
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Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms
GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms
GC(7)  Total Garbage: 76798M
GC(7)  Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms
GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms
Exploiting weak gen hypothesis:
1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead

3. Cycle shortcuts, because why bother...
Q redhat



Partials: Living Space

Problem:
Concurrent GC needs breathing room to succeed

Things that help:
m Aggressive heap expansion: prefer taking more memory
m Immediate garbage shortcuts: free memory early
m Partial collections: collect easy parts of heap first
m Mutator pacing: stall allocators before they hit the wall

Q redhat



Partials: Heap Segregation

Central Dogma:
Segregate parts of the heap by some property (age, size,
class, context, thread), and collect the subheaps separately

Q redhat



Partials: Heap Segregation

Central Dogma:
Segregate parts of the heap by some property (age, size,
class, context, thread), and collect the subheaps separately

Pesky detail:
requires knowing the incoming references
to the collected sub-heap

Q redhat



Partials: Serial/Parallel/CMS

CardTable [ [ [ [ [ [T TP TTPTT0T]

Old . .
Most GCs exploit this
by dividing the heap

Young into generations

Q redhat



Partials: Serial/Parallel/CMS

CardTable [T T T T [T TTTT 1T IM] Young gen can be
old ] collected separately, if
3 we know the incoming
references from Old
Youns <« gen. Card Table
records this for us with
the write barriers

Q redhat



Partials: Serial/Parallel/CMS

CardTable (T T T T T T T T T T T T[]

Old

Young <

Young collection
processes Young gen,
and dirty parts of Old
gen, thus maintaining

heap integrity

Q redhat



Partials: G1

CardTable [ [ [ [ [ [T TP TTPTT0T]

RSets

Regions

G1 is more advanced: it
has Remembered Sets

Q redhat



Partials: G1

ot Tadle [T TTTTTTTTTTTTH] Write barrier marks the
Card Table. But it is not
Reets t 11 P11 P11 Tl enough to quickly
Regions collect a single region:
we would need to scan
Yoo e all dirty cards

Q redhat



Partials: G1

CardTable [ [ [ [ [ [ [ [ [T T 1]
v.j Using Card Table, G1

. asynchronously builds

RSets 11 111 (1] Remembered Sets: the

Regions list of blocks that

contain references to
each region

--------
-----------------------
.
.

reg
.
.....
LS .
......
lllllllll

Q redhat



Partials: G1

CardTable [T [ T T T T T T T T T 11 W]
................................. v Now we can quickly
Rsets B [T1_ [T [T collect a single region:
RSet tells us what dirty
Regions parts related to the
concrete region

.
.....
LS .
......
lllllllll

Q redhat



Partials: G1

Card Table D:.:l In Practice, naive
........................ v RSets are uber-large.

- G1 becomes
Rsets [l u [ generational: some
Regions regions are young, and
no need to record
references between
........... them

Q redhat



Partials: G1

Card Table

RSets

Regions

----------
--------------------
"
.

.
.....
, .
......
...........

Interesting trade-off:
cannot collect a single
young region now!

Requires a careful
balancing act to make
sure pause times are

good, and RSet
footprint is small!

Q redhat



Partials: Shenandoah

Matrix | | | | T
[T Idea: why not to have
o much coarser card
, table, but for each
Regions region?

Q redhat



Partials: Shenandoah

Matrix
I [ 1

[ ] Then we can support

the connection matrix,

and know things about
heap connectivity

Regions

"
y g
-
B L

Q redhat



Partials: Shenandoah

Matrix
I [ 1

L] Example: collect first
region, and matrix tells
us we also need to
scan the fourth.

Regions

.....
. s
------------------

Q redhat



Partials: Shenandoah

Example: collect first
Matrix |—|—|—q region, and matrix tells
L] us we also need to
111 scan the fourth.

This works because the
GC is concurrent, and
............................ we can spend time
scanning the entire
region!

Regions

Q redhat



Partials: Example

GC(75) Pause Init Mark 0.483ms

GC(75) Concurrent marking 33318M->45596M(51200M) 508.658ms
GC(75) Pause Final Mark 0.245ms

GC(75) Concurrent cleanup 45612M->16196M(51200M) 3.499ms

VS

GC(193) Pause Init Partial 1.913ms
GC(193) Concurrent partial 27062M->27082M(51200M) 0.108ms
GC(193) Pause Final Partial 0.570ms
GC(193) Concurrent cleanup 27086M->17092M(51200M) 15.241ms

Q redhat



Partials: Observations (so far) 826

1. Maintaining the connectivity data means more barriers!

Translation: The increased GC efficiency need to offset
more throughput overhead

2. Optionality helps where barriers overhead is too much
Translation: No need to pay when partial doesn’t help

3. Advanced policies are possible, beyond generational
Example: Take out lonely old regions

Q redhat



Mutator Pacing: Living Space

Problem:
Concurrent GC needs breathing room to succeed

Things that help:
m Aggressive heap expansion: prefer taking more memory
m Immediate garbage shortcuts: free memory early
m Partial collections: collect easy parts of heap first
m Mutator pacing: stall allocators before they hit the wall

Q redhat



Conclusion



Conclusion: In Single Picture

Universal GC does not exist:
either low latency, or high throughput
(, or low memory footprint)

| Shenandoah | | Parallel, Serial |
| G1, CMS |
Pause times
>
1 ms 10 ms 100 ms 1ls 10 s
< Runtime overheads
30% 20% 10% 5% 0%

Choose this for your workload!

Q redhat



Conclusion: In Single Paragraph

1. No GC could detect what tradeoffs you are after: you
have to tell it yourself
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Conclusion: In Single Paragraph

1.

No GC could detect what tradeoffs you are after: you
have to tell it yourself

. Stop-the-world GCs beat concurrent GCs in throughput

and efficiency. Parallel is your choice!

. Concurrent Mark trims down the pauses significantly. G1

is ready for this, use it!

Concurrent Copy/Compact needs to be solved for even
shallower pauses. This is where Shenandoah comes in!

Q redhat



Conclusion: Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Development in separate JDK 10 forest, regular backports
to separate JDK 9 and 8u forests

m JDK 8u backport ships in RHEL 7.4+, Fedora 24+, and
derivatives (CentOS, Oracle Linux, Amazon Linux, etc)

m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk:10-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q redhat


https://wiki.openjdk.java.net/display/shenandoah/

Trivia



Trivia: Compiler Support

C1 C2
Test | G1 | Shen | %diff | G1 | Shen | %diff
Cmp 78 72| 7% || 127 16 | -8%
Cpr 125 86 | -31% || 146 125 | -15%
Cry 79 62 | -21% || 238 240 | +1%
Drb 75 69 7% || 165 150 -9%
Mpa 31 21| -33% 50 40 | -20%
Sci a2 32| -23% 74 70 -5%
Ser 1626 1293 | -20% || 2450 2172 | -11%
Sun 93 74 | -20% || 111 97 | -13%
Xml 88 72| -19% || 190 168 | -12%

C1 codegens good barriers, but C2 also does high-level optimizations

O redhat



Trivia: JMM Tricks

We can read from-copy (i.e. skip RBs), as long as:
1. No locks, volatile reads/writes, memory barriers
2. No calls into the opaque methods

Q redhat



Trivia: JMM Tricks

We can read from-copy (i.e. skip RBs), as long as:
1. No locks, volatile reads/writes, memory barriers
2. No calls into the opaque methods

As the rule, we can:
1. Avoid re-doing RBs after safepoints
2. Erase RBs when reading final-s

Q redhat



Trivia: JMM Tricks

>

3 final on fields finally improves performance!

Benchmark

plain

Score
| final

Units

time
L1-dcache-1loads
instructions

2.7 +o.1 2.6 +o.1
13.2 +0.1 | 11.2 +o0.1
29.6 406 |28.5 +o0.3

ns/op
#/op
#/op

O redhat



Trivia: Mark Solutions
Two classic approaches to solve this:

1. Incremental Update: intercept the stores, and process
insertions, thus traversing new paths - good, but has
weak termination guarantees

2. Snapshot-at-the-Beginning: intercept the stores, and
process deletions, thus mitigating the destructive
mutations - also good, but overestimates liveness

(there are also non-classic approaches, but not for this talk)

Q redhat
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