Java Memory Model Unlearning Experience
or, «Crazy Russian Guy Yells About JMM»

Aleksey Shipilév

shade@redhat.com
@shipilev

Safe Harbor / Tuxaa N'aBaHb

Anything on this or any subsequent slides may be a lie. Do
not base your decisions on this talk. If you do, ask for
professional help.

Bcé uto yrogHO Ha 3TOM cnaije, Kak 1 Ha BCex CiefyoLnx,
MOXeT 6bITb BpaHbEM. He npvHUMaliTe peLlleHunin Ha
OCHOBaHMWM 3TOro Aoknaga. Ecav Bcé-Takm pewunte NpUHSATD,
TO HallMUTe NpodpeccnoHanos.

Q redhat

Theory

Spec: ...vs Implementation

Everybody intuitively understands the difference between
the specification and the implementation

class Integer {

VLS
* Returns a {@code String} object representing the
* spectfied integer. The argument 1s converted to signed decimal
* representation and returned as a string, exactly as if ...
*/

public static String toString(int i) {
// Who cares what is going on here?

}
} ‘ redhat

Spec: Good Spec Is A Balance

m Underspecify, and things become unusable:
Jkx

* This method can do whatever it pleases.
*/

public void summonNasalDemons(int count) { ... }

m Overspecify, and implementation choices are limited:

Jkx
* This method checks <f Java program halts.
*/
public boolean checkHalt(String program) { ... }

O redhat

Spec: Abstract Machines

Language semantics is specified by the behavior
of the abstract machine

public int m() {

int x = 42; prolog
int y = 34; = mov 76, %rax
int t =x +y; ...epilog. ..
return t; ret

}

If the result is not distinguishable from the abstract machine
behavior, nobody cares how it was achieved!

Q redhat

Spec: JMM Is Part Of Abstract Machine

If the result is not distinguishable from the abstract machine
behavior, nobody cares how it was achieved!

volatile int x;

public int m() { ...prolog. ..
x=1; N mov 2, (mem)
X = 2; mov 2, Y%rax
return Xx; ...epilog. ..

} ret

(In practice, not all optimizations are... practical)

Q redhat

JMM: Talk Idea

JMM is simple! (Not joking.)

Q redhat

JMM: Talk Idea

JMM is simple! (Not joking.)

The problem is educational:

m Most JMM talks discuss what JMM is about:

m Works, but piles on naive misconceptions
m Also talks about implementations, blurring the whole thing

Q redhat

JMM: Talk Idea

JMM is simple! (Not joking.)

The problem is educational:

m Most JMM talks discuss what JMM is about:

m Works, but piles on naive misconceptions
m Also talks about implementations, blurring the whole thing

m This talk discusses what JMM is not about:

m This is the unlearning experience!
®= (And we try to deconstruct misconceptions)

Q redhat

JMM: Problem

«Oh, give me 5 minutes to read up on JMM!»

Given a write w, a freeze f, an action a (that is not a read of a £ina1 field), a read

. 'w. ‘z’ f r; of the £ina1 field frozen by f; and aread r> such that hb(w, f), hb(f, a), me(a, r1),

S, 3/ and dereferences(ry, rz), then when determining which values can be seen by r,,

java An execution Eis described b, we consider hb(w, ;). (This happens-before ordering does not transitively close
+ P-aprogram with other happens-before orderings.)

¢ A- aset of actions
= * po - program order, whi - ;
performed by 7in A

¢ so - synchronization order
-4

+ Well-formed executions EJ, ..., where E; = < P, A, po, 0, Wi, V swy, hb; >.

Given these sets of actions Cy, ... and executions Ej, ... , every action in C; must
be one of the actions in E,. All actions in C; must share the same relative happens-
before order and synchronization order in both E; and E. Formally:

1. Cjisasubset of A;

The Java Language o There exists a set O of actjo;s 5\’1<x:<hI m;r,’;lconsists of a hang action plus all the
Specification cal i s sl 2 0| G e cxicn ot it
—Both O and O' are subsets of A that fulfill the requirements for sets of - Formally:
observable actions.
—-0cOcA
0|2k

O redhat

JMM: Actions and Executions

Executions ~ Actions U Orders U Consistency Rules

Q redhat

JMM: Actions and Executions

Executions ~ Actions U Orders U Consistency Rules

Executions are the behaviors of the abstract machine, not
the behavior of final implementation. They define all possible
ways the Java program can possibly execute.

Q redhat

JMM: Actions and Executions

Executions ~ Actions U Orders U Consistency Rules

Actions:
m w(field, V') - write value V into field
m r(field) : V -read value V from field
m L(monitor) - lock the monitor
m UL(monitor) - unlock the monitor
m ..

Q redhat

JMM: Actions and Executions

Executions ~ Actions U Orders U Consistency Rules

Orders:

w(a, 1) o, r(a):1...w(a,?2)
Consistency rules:
m PO consistency
m SO consistency, SO -PO consistency

m HB consistency
Qredhat

JMM: Umm...

When someone explains something
to you multiple times but you still
have no idea wtf is going on

Q redhat.

JMM: Why?

MM {Executions} — {Outcomes}
. e yie .
Orlglnal i subset of
Program |
o Some yields Some
mp

Implementation Results

Q redhat

JMM: Why?

JMM {Executions} — {Outcomes}
. . yie .
O”glnal 3 subset of
Program |
Some yields Some
Impl . _
int a = 0 Implementation Results
a=1]a=2
rl = a

Q redhat

JMM: Why? -
w(a,1) —r(a):1..w(a,2)

w(a, 1) 0, r(a):2...w(a,?2)

JMM {Executions} — {Outcomes}
. . yie .
O”glnal 3 subset of
Program |
Some yields Some
Impl . _
int a = 0 Implementation Results
a=1]a=2
rl = a

Q redhat

JMM: Why? -
w(a,1) —r(a):1..w(a,2)

rl e 1,2
w(a, 1) 0, r(a):2...w(a,?2) th2}
JMM {Executions} T {Outcomes}
Original T subset of
Program |
Some yields Some
Impl . _
int a = 0 Implementation Results
a=1]a=2
rl = a

Q redhat

JMM: Why? -
w(a,1) —r(a):1..w(a,2)

rl e 1,2
w(a, 1) 0, r(a):2...w(a,?2) th2}
JMM {Executions} T {Outcomes}
Original T subset of
Program |
Some yields Some
Impl . _
int a = 0 Implementation Results
a=1/]a=2 mov 1 — (a)
rl = a mov 1 — (rl)

Q redhat

JMM: Why? -
w(a,1) —r(a):1..w(a,2)

rl e 1,2
w(a, 1) 0, r(a):2...w(a,?2) th2}
JMM {Executions} T {Outcomes}
Original T subset of
Program |
Some yields Some
Impl . _
int a = 0 Implementation Results
a=1)a=2 mov 1 — (a) rl € {1}
rl = a mov 1 — (rl)

Q redhat

JMM:

Takeaway #1: Studying Implementations

Implementations are allowed to
generate the subset of allowed
outcomes, not all of them

m You can study JSR 133
Cookbook, but take it with a

JSR-133 .

Coo grain of salt

O redhat

JMM:

Takeaway #1: Studying Implementations

Implementations are allowed to
generate the subset of allowed
outcomes, not all of them

m You can study JSR 133
Cookbook, but take it with a
JSR-133 .
Coo grain of salt
m Reductio ad absurdum:
Global Interpreter Lock

O redhat

JMM: JSR 133 Cookbhook For Compiler Writers!

[StoreStore + LoadStorel
volatile store
[StoreLoad]

volatile load
[LoadLoad + LoadStore]

«Oh wow, so simplel»
1. Do not push operations after the volatile store
2. Do not pull operations before the volatile load
3. Do (1), (2) for synchronized enter/exit
4. Do not push operations after writing final fields

Q redhat

JMM: Lock Coarsening with JSR 133 Cookbook

void m() {
: [LoadStore] // monitorenter
void m() { x = 1
hronized (thi o
syiczr(;r.nze (this) { [StoreStore]| // monitorezit
’ [Storeload]
} Cookbook
h ized (thi _—
syr;c:rir'llze (this) { [LoadStore] // montitorenter
y you
} [StoreStore] // monitorezit
[Storeload]
}

Canwereorderx = tandy = 1?
JSR 133 Cookbook: Nope, you cannot.

Q redhat

JMM: Lock Coarsening with JMM

void m() {
synchronized(this) { void m() {
x =1; synchronized(this) {
b coarsening y =1
synchronized(this) { — x = 1;
y = 1; +
} }
}

JSR 133 Cookbook: Nope, you cannot.
Java Memory Model: Of course you can.
HotSpot: OK, doing it!

Q redhat

JMM: Takeaway #2, Implementation Details

These are not mandated by specification,
these are implementation details: 73

void barrier() {
synchronized(this) {}; // do barrier!
}

Q redhat

JMM: Takeaway #2, Implementation Details

These are not mandated by specification,
these are implementation details: <

void barrier() {
synchronized(this) {}; // do barrier!
}

volatile int v;
void barrier() {
v =1, // do barrier!

}
Q redhat

JMM:

volatile int v;
void barrier() {
v =1, // do barrier!

by

Takeaway #2, Implementation Details

These are not mandated by specification,
these are implementation details: <

void barrier() {
synchronized(this) {}; // do barrier!
}

class MyClass {
volatile int v;
MyClass() {
this.v = 42;
// do barrier!
}
} ‘ redhat

Behaviors

Races: Example 1.1

class M { ... }
M m;
m =new MO; |M 1Im = m;
m = null; rl = (Im '= null);

r2 = (Im !'= null);

Q redhat

Races: Example 1.1

class M { ... }
M m;
m =new MO; |M 1Im = m;
m = null; rl = (Im '= null);

r2 = (Im !'= null);

JMM allows only (F, F) and (T, T)

Q redhat

Races: Example 1.1, Counter-Argument

Can't compiler «inline» the local variable?

class M { ... }
M m;
m = new M();
m = null; rl = (m !'= null);
r2 = (m !'= null);

Q redhat

N

Races: Example 1.1, Counter-Argument ey

Can't compiler «inline» the local variable?

class M { ... }
M m;
m = new M();
m = null; rl = (m !'= null);
r2 = (m !'= null);

See, there is an obvious execution that yields (7', F') now!

.r(m) : Inull =, r(m) : null
Q redhat

JMM: Program Order

Program order (PO) provides the link
between the execution and the program in question

m PO - total order for any given thread in isolation

m PO consistency: PO is consistent with the source
code order in the original program

Q redhat

JMM: PO And Transformations

Original program:

M 1Im = m; po
rl = (Im !'= null); w(m, x) — w(m, null)
r2 = (Im !'= null); r(m) : x

Transformed program:

rl1 = (m != null); w(m, *) =, w(m, null)
r2 = (m !'= null); po
r(m):x — r(m) : *
Qredhat

JMM: PO And Transformalthis execution does not relate
to the original program, oops
Original program:

M 1Im = m; po
rl = (Im !'= null); w(m, x) — w(m,null)
r2 = (Im !'= null); r(m) : x
Transformed program:
po
rl1 = (m != null); w(m, x) — w(m, null)
r2 = (m !'= null); po

rem) ik —rim) ok
() () Qredhat

JMM: PO And TransformafTyis execution should be used

to reason about outcomes
Original pi for the transformed program

M 1lm = m; po/

rl = (Im !'= null); w(m, x) — w(m, null)
r2 = (Im !'= null); r(m) : x

Transformed program:

rl1 = (m != null); w(m, *) =, w(m, null)
r2 = (m !'= null); po
r(m):x — r(m) : *
Qredhat

JMM: PO And Transformations

M Im

r2 =

r2 =

Original program:

Transform

po

program:

PO consistency:

Original program has single read?
Relatable executions also have single read!

AN

7

(m, x) — w(m, null)

,null)

Dok

Q redhat

Races: Example 1.2, Null-Checks

In Java, unlike C/C++:

int s() {
M Im = m;
if (Im '= null) {
return Im.x; // <--- This does not risk NPE
else
return O;

This would later become a building block
for so called «benign» data races

Q redhat

Races: Takeaway #3

1. Data race behavior is still somewhat deterministic
m Racy reads are stronger than in other languages
m Weird stuff still happens, but not completely catastrophic &

2. Memory-model-wise, there is a difference:

int m1() {

int x1 = field; int x1 = field;
int x2 = field;

int x2 = x1;
return x1 + x2; return x1 + x2;
} }

int m2() {

Q redhat

Races: JMM and Ordering Modes

Java 8 Java 9

plain VH Plain

< = Definite

volatile | VH SeqCst Y

Q redhat

Coherence

Coherence: Example 2.1

int x;

x=1;|rl =x; // n
r2 = x; // ro

Q redhat

Coherence: Example 2.1 Q20

int x;
x=1;|rl =x; // n
r2 = x; // T9

JMM allows observing (1, 0), see:

w(x,1) ... m(z): 1 i>7“2(95): 0

Q redhat

Coherence: Example 2.1 Q20

int x;
x=1;|rl =x; // n
r2 =x; // re

JMM allows observing (1, 0), see:
w(x,1) ... m(z): 1 —Ei+7§(x): 0
This execution is PO consistent, both reads are here!
& rednat

Coherence: Definition

Coherence (def.):
The writes to the single memory location
appear to be in a total order
consistent with program order

m Most hardware gives this for free

m Most optimizers give up on this by default (i.e. do
not track the order of reads)

Q redhat

JMM: Consistency Rules

PO consistency affects the structure of the execution.
What we need: a consistency rule that affects values
observed by the actions.

In JMM, there are two of them:
1. Happens-before (HB) consistency

2. Synchronization order (SO) consistency

Q redhat

JMM: Consistency Rules

PO consistency affects the structure of the execution.
What we need: a consistency rule that affects values
observed by the actions.

In JMM, there are two of them:
1. Happens-before (HB) consistency

2. Synchronization order (SO) consistency < now!

Q redhat

JMM: SO - Synchronization Order

SO covers all synchronization actions:
volatile read/write, lock/unlock, etc.

m SO is a total order («All SA actions relate to each other»)

po

m SO - PO consistency: =, and > agree

m SO consistency: reads see only the latest write in =

Q redhat

JMM: SO - Synchronization Order

SO covers all synchronization actions:
volatile read/write, lock/unlock, etc.

m SO is a total order («All SA actions relate to each other»)

po

m SO - PO consistency: =, and > agree

m SO consistency: reads see only the latest write in =

Just what coherence wants!

Q redhat

Coherence: Example 2.2

volatile int x;

x=1;|rl =x; // nr
r2 =x; // 7o

Q redhat

Coherence: Example 2.2

volatile int x;
x=1;|rl =x; // n
r2 =x; // ry

Valid executions give (0,0), (1, 1), (0, 1):?

w(zx, 1) = ri(x): 1 = ro(x) 1
ri(z): 0 —T+'u(151)-ji+7§(x): 1

ri(z): 0 = ro(z) : 0 —jiézu(x,l)

aProving no other outcornes axist is left as an exercise for the reader

N
& 0

Q redhat

Coherence: Takeaway #4

1. Races laugh at our presuppositions about order
m Most of the time, there is a complete free-for-all
m Madness usually manifests after code transformations
m Although hardware can also get us down

2. Coherency, while basic, is not guaranteed, unless...

m We use volatile thatis naturally coherent
m We use weaker forms of VarHandles that are coherent
m We use properly synchronized (non-racy) reads

Q redhat

Coherence: JMM and Ordering Modes

Java 8 Java 9

plain VH Plain
- VH Opaque

< < = Definite
~ = = Coherence

volatile | VH SeqCst | Y| Y

Q redhat

Causality

Causality: SW - Synchronizes-With Order

When one SA «sees» the value of another SA,
they are said to be in «synchronizes-with» (SW) relation

m SW is a partial order
m SW connects the operations that «see» each other
m Acts like the «bridge» between the threads

Q redhat

Causality: HB - Happens-Before Order

HB is a transitive closure
over the union of PO and SW

m HB is a partial order
(Translation: not everything is connected)

m HB consistency: reads observe either:

.. hb
the last write in —, or

any other write, not ordered by o,

Q redhat

Causality: Example 3.1 :;

int x;
volatile int y;
x=1;|rl =y;
y=1;]r2 = x;

Q redhat

Causality: Example 3.1 :;

int x;
volatile int y;
x=1;|rl =y;
y=1;]|r2 = x;

We are dealing with this class of executions:

zu(x,l)-jf+ w(y,1) ... r(y): BN r(x) : *

Q redhat

Causality: Example 3.1

int x;
volatile int y;
x=1;|rl =y;
y=1;,]r2 = x;

Racy subclass:

1U(x,1)-jiézu(y,1) .. r(y): 0 —E1>r(x): 0
zu(x,l)-lf+'u(y,1) .r(y): 0 —E1>r(x): 1

Q redhat

Causality: Example 3.1

int x;
volatile int y;
x=1;|rl =y;
y=1;,]r2 = x;

Non-racy subclass:

1
-0

Q redhat

Causality: Look Closer, #1

Happens-before is defined over actions,
not over statements: notice no HB between volatile ops!

w(z,1) i>w(y, 1) ... 7(y): 0 o, r(z): 0

* T
N

not required to see this

Q redhat

Causality: Look Closer, #2

This violates HB consistency:

hb hb hb
w(z,1) | — w(y,1) —r(y): 1 —|r(z): 0

) T
N

should have seen this!

Causality: Observing the volatile store causes observing
everything stored before it

Q redhat

Causality: Example 3.2 [otice the order Q20
is different

int x;

volatile int y;
y=1;|rl = x;
x=1;,]r2 =y,

Q redhat

Causality: Example 3.2 [otice the order Q20
is different

int x;

volatile int y;
y=1;|rl = x;
x=1;,]r2 =y,

Hey, look how (1,0) is allowed:

zu(y,l)—fzézu(x,l) o r(x) 12 r(y): 0

Q redhat

Causality: Example 3.2 [otice the order Q20
is different

int x;

volatile int y;
y=1;|rl = x;
x=1;,]r2 =y,

Hey, look how (1,0) is allowed:
zu(y,l)—fzézu(x,l) o r(x) 12 r(y): 0

Look: irrelevant that y is volatile!
Qredhat

Causality: Safe Publication

volatile int v;

X = ... acquire | if (v == 1) {
y B send %nt 1x = x;
zZ= ... int 1y = vy,
v=1; int 1z = z;

}

m As if «commits to memory», but only for acqg/rel pair
B release «COMMIts», acquire gets the committed
B acquire has to see release witness!

Q redhat

Causality: Takeaway #5

1. Safe publication is the major (and simple) rule

m Identify your acquires and releases a
m Check that acquires/releases are on all paths
m Learn this rule! Then learn it again!

2. The whole thing does not require JMM reasoning

= Hardly anyone applies «<happens-before» correctly
m Hardly anyone can do it reliably
m Itis very easy to miss the racy access

Q redhat

Causality: JMM and Ordering Modes

o | >
() O +
+ =
- () —
8 8|
i () 2]
©|8| @
Java 8 Java 9 Ao |0
- - N| N| N
plain VH Plain Y| N| N
- VH Opaque Y Y| N
- VH Acq/Rel | Y| Y| Y
volatile | VH SeqCst Y| Y| Y

Q redhat

Consensus

Consensus: Example 4.1

volatile int x, y;

int r3 = x;
int r4

x=1;|y=1; |int rl = y;

int r2 = x;

Il
<

HB alone allows seeing (1,0, 1,0):

w(y, 1) LN ri(y) : 1 LN r3(z)

0
hb hb
w(z,1) —> ry(x) : 1 —> ry(y) : 0

Q redhat

Consensus: SC

Sequential Consistency (SC): (def.)

«...the result of any execution is the same as if the
operations of all the processors were executed
in some sequential order, and the operations of
each individual processor appear in this sequence
in the order specified by its program»

Q redhat

Consensus: SO - Synchronization Order

SO covers all synchronization actions:
volatile read/write, lock/unlock, etc.

m SO is a total order («All SA actions relate to each other»)

po

m SO - PO consistency: =, and > agree

m SO consistency: reads see only the latest write in =

Just what Sequential Consistency wants!

Q redhat

Consensus: Takeaway #6

1. SO =~ Sequential Consistency 73
m Want SC? You have to go full-blown volatile
m Seed enough volatiles around your program, and it
eventually becomes data-race-free! /s

2. Sequential Consistency is not always needed

m Extreme costs to get it in distributed systems
m Most examples so far were fine with just Release/Acquire!

Q redhat

Consensus: JMM and Ordering Modes

O | >
() O + =3
L a|H | @
- o | - =
4 5| ° | o
- () n 9]
51505 8
Java 8 Java 9 A0 |O | O
- - N| N| N| N
plain VH Plain Y| N|] N| N
- VH Opaque Y Y| N| N
- VH Acq/Rel | Y| Y| Y| N
volatile | VH SeqCst Y Y| Y| Y

Q redhat

Finals: Example 5.1

class M { final int x = 42; }
M m;

m=mnew MO |M Im =m

if (Im '= null)

rl = Im.x
else
rl =1

Q redhat

Finals: Example 5.1

class M { final int x = 42; }
M m;

m=mnew MO |M Im =m

if (Im '= null)

rl = Im.x
else
rl =1

JMM guarantees seeing the value of final field here:
rl e {1,42}
Qredhat

Finals: Example 5.1

class M { final int x = 42; }
M m;

m=new MO |M 1Im =m

if (Im '= null)

rl = Im.x
else
rl =1

Special rule, if x is a final field:

zu(x,42)-lf+ r(x) : 42
Q redhat

Finals: Example 5.2

class M { wolatile int x = 42; }
M m;

m=new MO |M 1Im =m

if (Im '= null)

rl = Im.x
else
rl =1

Q redhat

Finals: Example 5.2

class M { wolatile int x = 42; }
M m;

m=mnew M() |M Im =m

if (Im !'= null)

rl = Im.x
else
rl =1

JMM allows (0) here:

w(em.x,42) o, w(em,m) ... r(m) :Ilm o, r(lm.x): 0
Qredhat

Finals: Example 5.2

class M { wolatile int x = 42; }
M m;

m=mnew MO |M Im =m

if (Im !'= null)

rl = Im.x
else
rl =1

volatile ¢ final
final ¢ volatile

Q redhat

Finals: Safe Construction

Special rule for final fields:

hb
writes final — Teads fina
The derivation for that rule is complicated.

Two absolutely necessary things:
m Field is final
m Constructor does not publish this

Q redhat

Finals: Benign Races

V v; // deliberately mon-volatile

public V racyRacy() {
V 1lv = v; // RULE 1: Read it once (ractily)
if (v == null) { // RULE 2: Check it is fine
v = compute(); // RULE 3: Recover by safely constructing
}

return 1v;

3

Forgo one of the rules, and you get the non-benign race.

Q redhat

Finals: Benign Races, Real Example

public class AbstractMap<K, V> {
transient Set<K> keySet; // nom-volatile

public Set<K> keySet() {
Set<K> ks = keySet; // RULE 1: Read it once (racily)
if (ks == null) { // RULE 2: Check it’s fine
ks = new KeySet(); // RULE 3: Recover by safely constructing
keySet = ks;
}

return ks;

O redhat

Finals: Takeaway #7

1. Safe construction is another major (and simple) rule

m Use it to protect against inadvertent races! <
m When it doubt, make all fields final

2. Benign races are seldom useful

m Allow avoiding synchronized ops on critical paths
m Work only if three rules are followed: single (racy) read,
reliability check, recovery path that safely constructs

Q redhat

Locks

Locks: JMM and Ordering Modes

—
() > 2] §
o | O|PL | 3| M

L a|H | @
- o | d a —
g 8| d | 0| o
- 0} 0) =
©|S5|3| 8|5
Java 8 Java 9 Ao |0 |0 | =
- - N| N| N| N| N
plain VH Plain Y| N|] N| N| N
- VH Opaque Y Y| N| N| N
- VH Acq/Rel | Y| Y| Y| N| N
volatile | VH SeqCst Y Y| Y| Y| N
locks - Y Y Y] Y| Y

Q redhat

Summing Up

Summing Up: Rule #1: Safe Publication

Golden Rule:
Thread 1: store everything, then release
Thread 2: acquire, then read anything

m Automatically happens when publishing via
well-designed concurrency primitives

m Has to happen on all possible execution paths
m Has to happen in correct order

Q redhat

Summing Up: Rule #2: Safe Construction

AA
Golden Rule:
When in doubt, make all fields final.

m Makes the whole thing more resilient to races

m Think «defense in depth»: survive in case some path fails
to publish the instance safely

Q redhat

Summing Up: Rule #3: Benign Races @

Golden Rule: -

Object is safely constructed, and there is single read.
m Exotic optimization technique, rarely needed

m The (only) easy way to avoid synchronization

Q redhat

Summing Up: Rule #4: Exotic Modes @

Golden Rule: D
Don't.

m Just don't!

m There are cases where performance is so important, you
want to have weaker than volatile, but stronger than
plain - VarHandles to rescue!

Q redhat

Practice

Practice: Double-Checked Locking

volatile T val;
public T get() {
if (1] val == null) {
synchronized (this) {

if (2] val == null) {
val = new T();

b
+
}

return val;

}

Q redhat

Practice: Double-Checked Locking

volatile T val;
public T get() {
if (1] val == null) {
synchronized (this) {
if (2] val == null) { Holy Macaroni, it does not
val = new T(); work without volatile!
}

, ¥ But why do you need it?

return val;

}

O redhat

Practice: Double-Checked Locking

volatile T val;
public T get() {
if (1] val == null) {

synchronized (this) { What ordering modes are
if (2] val == null) { necessary at 1, 2, 3, 4?
val = new T();
}
}
}
return val;

}

O redhat

Practice: Double-Checked Locking

volatile T val;
public T get() {
if-{1] val == null) {

synchronized (this) { What ordering modes are
if (2] val == nulD) { necessary at 1, 2, 3, 4?
val = new T();
}
} m Release/acquire: 3 — 1
}
return val;

}

O redhat

Practice: Double-Checked Locking

volatile T val;
public T get() {
if-{1]wval == null) {

synchronized (this) { What ordering modes are
if (2] yal == null) { necessary at 1, 2, 3, 4?
val. = new T();
}
} m Release/acquire: 3 — 1
} m Coherence: 1 — 4
return val;

}

O redhat

Practice: DCL with VarHandles

static final VH = .. .;
V val; // not wolatile, specify at use-site

public V get() {
if (VH.getAcquire(this) == null) {
synchronized (this) {
if (VH.get(this) == null) {
VH.setRelease(this, new T());
}
}

}
return VH.get (this);

O redhat

Lazy<V>: The Purest Form

public class Lazy<V> {
final Supplier<V> s;
V v,
public Lazy(Supplier<V> s) {
this.s = s;

}

public synchronized V get() {
if (v == null) {
v = s.get();
}
return v;
}
}

Lazy instantiator:
obviously correct, right?

O redhat

Lazy<V>: The Purest Form

public class Lazy<V> {
final Supplier<V> s;

Vv,
public Lazy(Supplier<v> s) { Lazy instantiator:
, this.s = s; obviously correct, right?

public synchronized V get() {
if (v == null) {
v = s.get();
}
return v;

}

Let us optimize it a little.

}
O redhat

Lazy<V>: The Purest Form
public class Lazy<V> {

by

final Supplier<V> s;

Vv,
public Lazy(Supplier<v> s) { Lazy instantiator:
, this.s = s; obviously correct, right?

public synchronized V get() {

if (v == null Lo
' V<Z S.gzz()); ¢ Let us optimize it a little.

} First, let's apply DCL...
return v;

}

O redhat

Lazy<V>: Optimized #1

final Supplier<V> s;
votatie v Still works?
public V get() {
if (v == null) {
synchronized (this) {
if (v == null) {
v =s.get();
}
}
}
return v;

}
Q redhat

Lazy<V>: Optimized #1

final Supplier<V> s;
relatiie ¥ Still works? It does!
public V get() {
if (v == null) {
synchronized (this) {
if (v == null) {
v =s.get();
}
}
}
return v;

by

O redhat

Lazy<V>: Optimized #1

final Supplier<V> s;
volatile V v;

public V get() {

by

if (v == null) {
synchronized (this) {
if (v == null) {
v =s.get();
}
}
}

return v;

Still works? It does!

Let us polish it a bit:

1. Supplier is not really
needed after first and
only use

2. What if Supplier
returns null?

Q redhat

Lazy<V>: Optimized #2

[what?] V v;
[what?] Supplier<V> s;

public V get() {
if (s '= null) {
synchronized (this) {
if (s != null) {
s.get();
null;

S
b
}
b

return v;

Ummm... Where to put
volatile nOw?

m A. To field v

m B.To field s

m C.To bothvands
m D. 50:50

m E. Phone A Friend

O redhat

Lazy<V>: Optimized #2, Try 1

volatile V v;
Supplier<V> s;
Let us put volatile to v.
public T get() { Any problems?
if (O s '= null) {
synchronized (this) {
if (s != null) {
v = s.get();
[]s = null;
+
}
b

return v;

O redhat

Lazy<V>: Optimized #2, Try 1

volatile V v;
Supplier<V> s;

public T get() {

3

if $0 s != null) {
synchronized (this) {
v if (s !'= null) {

\‘ v =s.get(Q);
‘*{j s = null;
}

}

}

return v;

Let us put volatile to v.
Any problems?

Oops, release/acquire is
misplaced! Racy read of s
potentially exposes
r(v) : null

O redhat

Lazy<V>: Example 3.2 Notice the order
is different

int x;

volatile int y;
y=1;|rl = x;
x=1;,]r2 =y,

Hey, look how (1,0) is allowed:
zu(y,l)—fzézu(x,l) o r(x) 12 r(y): 0

Look: irrelevant that y is volatile!
Qredhat

Lazy<V>: Optimized #2, Try 2

V v,
volatile Supplier<V> s; Let us put volatile tO s.

2
public T get() { Any problems:

if (O s '= null) {
synchronized (this) {
if (s != null) {
v =s.get();
[0 s = null;
}
}
}

return v;

O redhat

Lazy<V>: Optimized #2, Try 2

V v,
volatile Supplier<V> s;

Let us put volatile to s.

public T get() { Any problems?
if] s '= null) {

synchronized (this) {
if (s != null) { No problem, our

v = s.get(); release/acquire witness
s = null; gets us the proper v.

+
}
}

return v;

O redhat

Lazy<V>: Optimized #2, Try 2

V v,
volatile Supplier<V> s;

Let us put volatile to s.
public T get() { Any problems?
if] s '= null) {
synchronized (this) {

if (s != null) { No problem, our

release/acquire witness

v =s.get();
s = null; gets us the proper v.
}
¥ Optimizing further? We
! don’t really like the
return v;
} volatile read!

O redhat

Lazy<V>: Optimized #3, Try 1

V v;
volatile Supplier<V> s;

public V get() { Non-volatile fast-path,

synchronized (this) {

if (s !'= null) {

= s.get();
s = null;
}
}
}
return [] v;

}
O redhat

Lazy<V>: Optimized #3, Try 1
V v;
volatile Supplier<V> s;

public V get() {

3

Non-volatile fast-path,
if,.q] v == null && s !'= null) A

. 5
,/ synchronized (this) { nice: Any prOblemS-
H if (s != null) {

: v = s.get();

". s = null;

vt Oops: no coherence
R between reads

} ‘\’

~
returnp{ | v;

Q redhat

Lazy<V>: Example 2.1

int x;
x=1;|rl =x; // n
r2 =x; // re

JMM allows observing (1, 0), see:
w(x,1) ... m(z): 1 —Ei+73(x): 0

This execution is PO consistent, both reads are here!

Q redhat

Lazy<V>: Optimized #3, Try 2
V v,
volatile Supplier<V> s;

public V get() { Fixing up coherency with
Viv=0v; single read. Any problems
if (v == null && s !'= null) { left?

synchronized (this) {
if (s !'= null) {
v =1lv = s.get();
s = null;
}
}
}

return 1v;

} ‘ redhat

Lazy<V>: Optimized #3, Try 2
V v,
volatile Supplier<V> s;

public V get() { Fixing up coherency with
Vilv=_[]v; single read. Any problems
if (v #= null && s !'= null) { left?

synchionized (this) {
if J(s !'= null) {
v =1v = s.get();
s = null;
} No release/acquire on this
} path, oops.
}

return 1v;

} ‘ redhat

Conclusions

Conclusions: In One Picture

HOPP'IHCSS / il

Q redhat

Conclusions: In Four Paragraphs
1. Safe publication and safe construction cover 99.99%
of real concurrency cases!

2. Benign races cover another 0.00999% of performance
optimization cases

3. All other fantasies on «what optimizers do», «what
hardware does» - please keep them out

4. Want more? Study JMM rules!

Q redhat

Conclusions: In 280 Symbols

4 Aleksey Shipiléy
shipilev

You don't have to be smart to write correct
concurrent code; but you have to be super-
smart if you try to outsmart the rules even a
tiny bit

B3 56 d=EE800E&E A
2:46 PM - 23 Sep 2016

O redhat

Conclusions: Further Reading

In ascending order of difficulty:

1. «Safe Publication and Safe Initialization in Java»:
https://shipilev.net/blog/2014/safe-public-construction/

2. «Java Memory Model Pragmatics»:
https://shipilev.net/blog/2014/jmm-pragmatics/

3. «Close Encounters of JMM Kind»:
https:
//shipilev.net/blog/2016/close-encounters-of-jmm-kind/

4. «Using JDK 9 Memory Order Modes»:
http://gee.cs.oswego.edu/dl/html/jOmm. html

Q redhat

https://shipilev.net/blog/2014/safe-public-construction/
https://shipilev.net/blog/2014/jmm-pragmatics/
https://shipilev.net/blog/2016/close-encounters-of-jmm-kind/
https://shipilev.net/blog/2016/close-encounters-of-jmm-kind/
http://gee.cs.oswego.edu/dl/html/j9mm.html

Backup

Backup: Global Memory Illusion

«Reordering» makes sense when there is
an illusion of global synchronized memory.

volatile int x, y;
y =1;|int rl = y;
int r2 = x;

int r3
int r4

x = 1; X;

Y

If we stick the barriers around the operations,
everything is fine, right?

Q redhat

Backup: IRIW

volatile int x, y;

int r3
int r4

x=1;]y=1; int rl = y;

int r2 = x;

X5
¥

(r1,72,r3,r4) = (1,0,1,0) is forbidden by JMM:

volatile ops are sequentially consistent.

Q redhat

Backup: IRIW With Barriers

volatile int x, y;

<fullFence> | <fullFence> | <loadFence> | <loadFence>
x = 1; y =1; int rl = y; | int r3 = x;
<fullFence> | <fullFence> | <loadFence> | <loadFence>
int r2 = x; | int rd = y;

<loadFence> | <loadFence>

Q redhat

Backup: IRIW With Barriers

volatile int x, y;
<fullFence> | <fullFence> | <loadFence> | <loadFence>
x = 1; y =1; int rl = y; | int r3 = x;
<fullFence> | <fullFence> | <loadFence> | <loadFence>
int r2 = x; | int rd = y;
<loadFence> | <loadFence>

PowerPC: LOL, nice try, but
(ri,r2,73,r4) =(1,0,1,0)

Screams internally)
Slide 83/86. «Java Memory Model Unlearn ‘ redhat

Backup: Consensus, Example 4.2

synchronized(m) { synchronized(m) {
x =1; X = 2;
y:l, y'=2’

} }

synchronized(m) {
rl = x;
r2 =y;

}

Q redhat

Backup: Consensus, Example 4.2

synchronized(m) {
x =1;
y =1

}

synchronized(m) { synchronized (m)
X = 2; rl = x;
y = 2; r2 =y;

+ }

If we only have HB, (1,2) is possible:

w(z, 1) h—b> w(y, 1)

w(z,2) h—b> w(y, 2)

hb
= UL(m) O
0L

hb
= UL(m) [

(m) =, r(x) 7 N r(y) :

{

7

Q redhat

Backup: Optimized #4, Try 1
V v,
Supplier<V> s;
What if we rely on v being

public V get() { safely constructed? That

V1iv = v;
if (1v == null & s '= nu11) { Would allow us to drop
synchronized (this) { volatile here, right?
if (s '= null) {
=1v = s.get();
s = null;
}
}
}
return 1v;

} ‘ redhat

Backup: Optimized #4, Try 1
V v,
Supplier<V> s;

What if we rely on v being

public V get() { safely constructed? That

e Id all d
if (1v == null && s '= null) { wou a oW us tO. rop
synchronized (this) { volatile here, right?
if (s !'= null) {
= 1lv = s.getO; No! Here is where it goes
, 5 = null; downbhill returning nul1:
hb
) ¥ w(v, V) — w(s, null)
hb
return 1v; r(v) : null — r(s) : null

O redhat

Backup: Optimized #4, Try 2
V v,
Supplier<V> s;

public V get() {

V1lv = v; What if we rely on v being
if (Iv == null) { safely constructed? That
synchronized (this) { would allow us to drop
if (s !'= null) {) .
- 1v = s.get(); volatile here, right?
s = null;
}
}
}
return 1lv;

¥ ‘ redhat

Backup: Optimized #4, Try 2
V v,
Supplier<V> s;

public V get() {

Vv = v; What if we rely on vV being
if (v == null) { safely constructed? That
synchronized (this) { would allow us to drop
if (s !'= null) {] . 5
- 1v = s.pet(): volatile here, right:
s = null;
} Now it is fine, follows the
, ¥ benign race pattern.
return 1lv;

¥ ‘ redhat

	Theory
	Spec
	JMM

	Behaviors
	Races
	JMM
	Races

	Coherence
	JMM
	Coherence

	Causality
	Consensus
	Finals

	Locks
	Summing Up
	Practice
	Lazy<V>

	Conclusions
	Backup

