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Safe Harbor / Tuxas NlaBaHb

Anything on this or any subsequent slides may be a lie. Do
not base your decisions on this talk. If you do, ask for
professional help.

BCE uTo yrogHoO Ha 3TOM C/1aiije, Kak N Ha BCeX CnefytoLumx,
MOXeT 6bITb BpaHbEM. He npuHUMainTe pelleHnin Ha
OCHOBaHWW 3TOro Aoknaga. Ecnm Bcé-Takn peinte NpuHATS,
TO HariMuTe NpodeccnoHanos..
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Workshop Plan (Provisional)

m Part I: Basic Bits
m JCStress: Why do it? How does it look?
m JMM: Looking at basic examples
(Coffee Break)
m Part II: Advanced Bits
m JCStress: How does it work? Why would you not do it manually?
m JMM: Looking at advanced examples
(Breathing Exercises)

m Part III: Fun Bits (optional)

m JCStress: Real JVM/JDK bugs discovered
m Breakout: Discussions, Future Work, etc.

O rednat



Workshop Resources

Most code is available as runnable JCStress Samples:

# Setup ---——--mm e
git clone https://github.com/openjdk/jcstress/

cd jcstress

export JAVA_HOME=<path-to-jdk-11>

export PATH=$JAVA_HOME/bin:$PATH

#BULlLd ——————m oo
mvn clean install -DskipTests -T 1C

#RUN ——-—— - e -
java -jar jcstress-samples/target/jcstress.jar ...

Q rednat



Workshop Involvement

m JCStress Samples have «How to run this test» section with
useful one-liners. -h shows some of the runner options
that might be useful.

m You could run the samples during the workshop.
However, you are not required to do so. Note
interesting cases for yourself, and then run them Iater.

m If you have questions, ask them in Telegram chat for the
talk. I can then modify the samples on the fly, or refer to
other samples.

O rednat



Part I. Basic Bits



JCStress Basics



JCStress Basics: Historical Context

m Circa 2013 (=~ JDK 8), we suddenly realized there are no
regular concurrency tests that ask hard questions about
JMM conformance

m Attempts to contribute JMM tests to JCK were futile:
probabilistic tests

m JVMs are notoriously awkward to test: many platforms,
many compilers, many compilation and runtime modes,
dependence on runtime profile

O rednat



JCStress Basics: Scoping

JCStress is ${value} testing framework

Where ${value} is:
m Java: targets low-level JVM work, but touches HW too
m empirical: distrust lower layers (JVM, OS, HW) are sane
m combinatorial: tests many configurations of the same test
m experimental. fluid implementation to fit new techiques

O rednat



JCStress Basics: Empirical, Not Model Checking

If you want model checking, go for Lincheck workshop:

Day 1. June 15 & s &
Time Lecture
UTC+03:00
Workshop. Lincheck: Testing concurrency on the JVM *
18:45 Maria Sokolova
Track 2 JetBrains

Workshop. Lincheck: Testing concurrency on the JVM (part 2)

*
20:30 Maria Sokolova
Track 2 JetBrains

Q rednat



JCStress Basics: Prior Art

1. Java Compatibility Kit (JCK)
m Developed by Oracle, JCP
m Tests Java Language Specification, Chapter 817
m Limited to normative clauses

2. JSR166 TCK

m Developed by Doug Lea et al.
m Tests java.util.concurrent.*

3. Litmus/DIY

m Developed by Peter Sewell et al.
m Tests hardware semantics

"Thttp://www.cl.cam.ac.uk/ pes20/ @ rednat


 http://www.cl.cam.ac.uk/~pes20/

Early Attempts: Concurrency Testing

Concurrency bugs are (data) race (condition) bugs

Need to create a controllable race condition:
m large enough, so that threads meet
m small enough, so that we can trust the results
m fast enough, so that timings are not masked

Unfortunately, naive tests do not check all these boxes...

O rednat



Early Attempts: Try #1

volatile int v;

void doTest() {
Thread t1 = new Thread(() -> v++);
Thread t2 = new Thread(() -> v++);
tl.start(); t2.start();
tl.join(); t2.join();

Assert.assertTrue(2, v);

3

«Collision Windows is far too small to capture anything
interesting.
Qredhat



Early Attempts: Try #2

volatile int v;
final CountDownLatch 1 = new CountDownLatch(2);

void doTest() {
Thread t1 = new Thread(() -> 1.countDown(); l.await(); v++);
Thread t2 = new Thread(() -> 1.countDown(); l.await(); v++);
tl.start(); t2.start();
tl.join(); t2.join();

Assert.assertTrue(2, v);

Threads still rarely meet; synchronization costs dominate.
Qredhat



Current Form: Idea At A Glance

@JCStressTest
@State
public class MyTest {
volatile int v;
Q@Actor void actorl(I_Result r) { r.ri
@Actor void actor2(I_Result r) { r.r2
+

v++; }
v )

m Large array of single-use state-bearing objects
m Actors access state objects under race
m Actors save their observations in provided storage

m Test infrastructure counts the observations
Qredhat



Current Form: Idea At A Glance

@JCStressTest
@State
public class MyTest {
volatile int v;
Q@Actor void actorl(I_Result r) { r.ri
Q@Actor void actor2(I_Result r) { r.r2
}

VAR
VAR

End result: counted (r1, r2) outcomes

RESULT SAMPLES FREQ EXPECT DESCRIPTION
1, 1 46,946,789 10.1% Interesting
1, 2 110,240,149 23.8% Acceptable
2, 1 306,529,420 66.1% Acceptable

Q rednat



Current Form: JCStress Examples

If you are reading the slides offline,
we are about to look through these examples:

https://github.com/openjdk/jcstress/
tree/master/jcstress-samples/src/main/
java/org/openjdk/jcstress/samples/api/

O rednat


https://github.com/openjdk/jcstress/tree/master/jcstress-samples/src/main/java/org/openjdk/jcstress/samples/api/
https://github.com/openjdk/jcstress/tree/master/jcstress-samples/src/main/java/org/openjdk/jcstress/samples/api/
https://github.com/openjdk/jcstress/tree/master/jcstress-samples/src/main/java/org/openjdk/jcstress/samples/api/

Current Form: Examples

Switching to JCStress in 3... 2... 1...

Slide 18/159. «JCStress Workshop», Aleksey Shipilév, 2021, [ ‘ redhat



JMM Basics



Spec: ...vs Implementation

Everybody intuitively understands the difference between
the specification and the implementation

class Integer {
VAT
* Returns a {@code String} object representing the
* spectfied integer. The argument 1s converted to signed decimal
* representation and returned as a string, exactly as if ...
*/
public static String toString(int i) {
// Who cares what ©s going on here?

by

}
Q redhat



Spec: Good Spec Is A Balance

m Underspecify, and things become unusable:
J**

* This method can do whatever it pleases.
*/

public void maybeSummonNasalDemons(int count) { ... }

m Overspecify, and implementation choices are limited:

VLTS
* This method checks <f Java program halts.
*/
public boolean checkHalt(String program) { ... }

Q rednat



Spec: Abstract Machines

Language semantics is specified by the behavior
of the abstract machine

public int m() {
int x 42;

: i . ...prolog...
int y = 34; = mov $76%, %rax
nt t =x +7y; ...epilog...
return t; ret

}

If the result is not distinguishable from the abstract machine
behavior, nobody cares how it was achieved!

O rednat



Spec: JMM Is Part Of Abstract Machine

If the result is not distinguishable from the abstract machine
behavior, nobody cares how it was achieved!

volatile int x;

public int m() { ...prolog. ..
x =1; . mov $2$, (mem)
x = 2; mov $2$, %rax
return x; ...epilog. ..

} ret

(In practice, not all optimizations are... practical)

O redhat



JMM: Problem

«Oh, give me 5 minutes to read up on JMM!»

Given a write w, a freeze f, an action a (that is not a read of a £ina1 field), a read

. 'w. ‘z’ f ry of the £ina1 field frozen by f; and aread r> such that hb(w, f), hb(f, a), me(a, r3),

S, 3/ and dereferences(ry, rz), then when determining which values can be seen by r3,

java An execution Eis described b, we consider hb(w, r2). (This happens-before ordering does not transitively close
+ P-aprogram with other happens-before orderings.)

* A-aset of actions
. * po - program order, whi( . - ;
peciormed by rinA * Well-formed executions Ej, ..., where E; = < P, A;, po;, so;, W, V;, sw;, hb; >.
Given these sets of actions Cj, ... and executions Ej, ... , every action in C; must
be one of the actions in E;. All actions in C; must share the same relative happens-
before order and synchronization order in both E; and E. Formally:

1. Cjis asubset of A;

¢ so - synchronization order
-4

The Java Language o There exists a set O of actio;s s;:k: m;tlzlconsjsts of a hang action plus all the
Specification Sl st n il |0 hen xR SO e
TRy —Both O and O' are subsets of A that fulfill the requirements for sets of - Formally:
observable actions.
-0cOcA
0|2k

Q redhat
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«Oh, give me 5 minutes to read up on JMM!»

Given a write w, a freeze f, an action a (that is not a read of a £ina1 field), a read
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L8 3/ and dereferences(ry, rz), then when determining which values can be seen by r3,

java An execution Eis described b, we consider hb(w, r2). (This happens-before ordering does not transitively close
+ P-aprogram with other happens-before orderings.)

* A-aset of actions
. ‘ * po - program order, whi ) - B
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JMM: Actions and Executions

Executions ~ Actions U Orders U Consistency Rules

O rednat



JMM: Actions and Executions

Executions ~ Actions U Orders U Consistency Rules

Executions are the behaviors of the abstract machine, not
the behavior of final implementation. They define all possible
ways the Java program can possibly execute.

O rednat



JMM: Actions and Executions

Executions ~ Actions U Orders U Consistency Rules

Actions:
m w(field, V') - write value V' into field
m r(field) : V -read value V from field
m L(monitor) - lock the monitor
m U L(monitor) - unlock the monitor
..

O rednat



JMM: Actions and Executions

Executions ~ Actions U Orders U Consistency Rules

Orders:

w(a, 1) BN r(a):1...w(a,2)
Consistency rules:
m PO consistency
m SO consistency, SO - PO consistency

m HB consistency
Oredhat



JMM: Umm...

When someone explains something
to you multiple times but you still
have no idea wtf is going on

O, redhat



JMM: Why?

JMM {Executions} — {Outcomes}
. o yie R
Orlglnal i subset of
Program |
> Some yields Some
mp

Implementation Results

O rednat



JMM: Why?

MM {Executions} v {Outcomes}
Original 3 subset of
Program . |
8 | Some yields Some
. I R —_—
int a=0 "  Implementation Results
a=1]|a=2
rl = a

O rednat



JMM: Why? -
w(a,1) —r(a):1..w(a,2)

w(a, 1) 0, r(a):2...w(a,?2)

MM {Executions} v {Outcomes}
Original 3 subset of
Program . |
8 | Some yields Some
. I R —_—
int a=0 "  Implementation Results
a=1]|a=2
rl = a
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JMM: Why? -
w(a,1) —r(a):1..w(a,2)

rl e 1,2
w(a, 1) 0, r(a):2...w(a,?2) th2}
MM {Executions} v {Outcomes}
Original T subset of
Program 1
. Some yields Some
int a=0 "  Implementation Results
a=1|a=2
rl = a

O redhat



JMM: Why? -
w(a,1) —r(a):1..w(a,2)

rl e 1,2
w(a, 1) 0, r(a):2...w(a,?2) th2}
MM {Executions} v {Outcomes}
Original T subset of
Program 1
. Some yields Some
int a=0 "  Implementation Results
a=1|a=2
mov 1 — (a)
rl = a

mov 1 — (r1)

O redhat



JMM: Why? -
w(a,1) —r(a):1..w(a,2)

rl e 1,2
w(a, 1) 0, r(a):2...w(a,?2) th2}
MM {Executions} v {Outcomes}
Original T subset of
Program 1
o) Some yields Some
int a = 0 Implementation Results
a=1|a=2
1
= a mov 1 — (a) rl € {1}

mov 1 — (r1)

O redhat



JMM: Takeaway #1: Studying Implementations

Implementations are allowed to
generate the subset of allowed
outcomes, not all of them

m You can study JSR 133
Cookbook, but take it with a
C’j;‘ grain of salt

Q redhat



JMM: Takeaway #1: Studying Implementations

Implementations are allowed to
generate the subset of allowed

73
%
outcomes, not all of them Z

m You can study JSR 133
Cookbook, but take it with a
Flre grain of salt
/ m Reductio ad absurdum:
Global Interpreter Lock

Q redhat



JMM: Takeaway #2, Interpreting Empirical Tests

The Universe is under no
obligation to show you all of the 72
outcomes allowed by spec or Z
implementation

m «Not reproducible» does
not mean «Not possible»

m Frequency is a soft evidence
on possibility

Q redhat



JMM: JEP 188

There used to be the JMM Update JEP:
https://openjdk. java.net/jeps/188

m Improved formalization
m JVM coverage

m Extended scope

m C11/C++11 compatibility
m Implementation guidance
...

O rednat
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JMM: JEP 188 @

There used to be the JMM Update JEP: Q
https://openjdk. java.net/jeps/188

m Improved formalization
m JVM coverage

m Extended scope

m C11/C++11 compatibility
m Implementation guidance
...

O rednat
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JMM: VarHandles f\

java.lang.Object

java.lang.invoke.VarHandle \_3
&
%)

public abstract class VarHandle
extends Object

A VarHandle is a dynamically strongly typed reference to a variable, or to a parametrically-defined
family of variables, including static fields, non-static fields, array elements, or components of an off-

heap data structure. Access to such variables is suegorted under various access modes, including
plain read/write access, volatile read/write access, and compare-and-swap.
L ] L] * L ] * L]

Access modes control atomicity and consistency properties. Plain read (get) and write (set)
accesses are guaranteed to be bitwise atomic only for references and for primitive values of at most
32 bits, and impose no observable ordering constraints with respect to threads other than the
executing thread. Qpague operations are bitwise atomic and coherently ordered with respect to
accesses to the same variable. In addition to obeying Opaque properties, Acguire mode reads and

. their subsequent accesses are ordered after matching Release mode writes and their previous

accesses. In addition to obeying Acquire and Release properties, all Volatile operations are totall
L]
ordered with respect to each other. h redhat



JMM: Overview

Java 8 Java 9
plain VH Plain

- VH Opaque
- VH Acq/Rel
volatile | VH SeqCst
final -

Q =< =< < = Coherence
= < ~< = =|Causality

= < = = =|(Consensus
< = = = =| Resilient

< < < < < Defined

A < < =< Q| Atomic

O rednat



JMM: JCStress Examples

If you are reading the slides offline,
we are about to look through these examples:

https:
//github.com/openjdk/jcstress/tree/
master/jcstress-samples/src/main/java/
org/openjdk/jcstress/samples/jmm/basic

O rednat
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Data Races: Definitions

m Conflict: at least 2 threads accessing the same variable,
and at least 1 thread is writer

m Concurrent only-readers are fine
m Write-write conflicts are fun

O rednat



Data Races: Definitions

m Conflict: at least 2 threads accessing the same variable,
and at least 1 thread is writer

m Concurrent only-readers are fine
m Write-write conflicts are fun

m Data Race: a conflict that is not ordered by
synchronization

m Key problem in low-level concurrency
m SC-DRF: Sequential Consistency for Data Race Freedom
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Data Races: Definitions

m Conflict: at least 2 threads accessing the same variable,
and at least 1 thread is writer

m Concurrent only-readers are fine
m Write-write conflicts are fun

m Data Race: a conflict that is not ordered by
synchronization

m Key problem in low-level concurrency
m SC-DRF: Sequential Consistency for Data Race Freedom

m Race Condition: system behavior is dependent on the
timing of events
m Not a problem, unless some behaviors are undesirable

O rednat



Data Races: Examples

Switching to JCStress in 3... 2... 1...

Slide 35/159. «JCStress Workshop», Aleksey Shipilév, 2021, [ ‘ redhat



Data Races: Takeway, #1

In Java, unlike C/C++:

int s() {
M Im = m;
if (Im '= null) {
return Im.x; // <--- This does not risk NPE
else
return O;

This would later become a building block
for so called «benign» data races

Q rednat



Data Races: Takeaway #2

1. Data race behavior is still somewhat deterministic
m Racy reads are stronger than in other languages

m Weird stuff still happens, but not completely catastrophic /6
m (This is what allows JCStress to even exist)

2. Memory-model-wise, there is a difference:

int m1() { int m2() {
int x1 = field; int x1 = field;
int x2 = field; int x2 = x1;
return x1 + x2; return x1 + x2;
} }

O rednat



Data Races: Overview

(O] > n |

O | P S| g

o] a | -H n| o

(0] O O — | -H

a | -H “ « o |

o = O n n o

IR IR

Java 8 Java 9 Al || |O|lx
plain VH Plain Y ~|/ N|N|N|N
- VH Opaque |[Y|Y | Y N |N|N
- VH Acq/Rel | Y| Y | Y| Y |N | N
volatile |VH SeqCst |Y | Y | Y | Y |Y N
final - Y ~|~| N |N|Y

O redhat



Access Atomicity: Definition

For any built-in type T:
Tt =V1;
Q@Actor void actorl() {

t = V2;
}

OActor void actor2(T_Result r) {
r.ri = 1t;

}
ri e {V1,V2}

Q rednat



Access Atomicity: Examples

Switching to JCStress in 3... 2... 1...

Slide 40/159. «JCStress Workshop», Aleksey Shipilév, 2021, [ ‘ redhat



Access Atomicity: Takeaway

1. Most built-in types are access atomic

m Almost all are naturally aligned
m Unless 32-bit JVMs are present

2. Doing unnatural accesses break atomicity again

B ByteBuffer-s «compound» operations
®m Unsafe «compound» operations

3. Larger types would break access atomicity again
m Watch out for value/inline/primitive types

O rednat



Access Atomicity: Overview

Java 8 Java 9
plain VH Plain

- VH Opaque
- VH Acq/Rel
volatile | VH SeqCst
final -

< < < < <|Defined

! < < < =| Coherence
= ~< ~< = =|Causality
= < = = =| Consensus
< = = = =|Resilient

X < =< =< Q| Atomic

O redhat



Coherence: Definition

Coherence (def.):
The writes to the single memory location
appear to be in a total order
consistent with program order

m Most hardware gives this for free

m Most optimizers give up on this by default (i.e. do
not track the order of reads)

O rednat



Coherence: Examples

Switching to JCStress in 3... 2... 1...

Slide 44/159. «JCStress Workshop», Aleksey Shipilév, 2021, [ " rednat
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Coherence: Takeaway

1. Races laugh at our presuppositions about order

m Most of the time, there is a complete free-for-all
m Madness usually manifests after code transformations
m Although hardware can also get us down

2. Coherency, while basic, is not guaranteed, unless...

m We use volatile thatis naturally coherent
m We use weaker forms of VarHandles that are coherent
m We use properly synchronized (non-racy) reads

O rednat



Coherence: Overview

(O] > n |

O | P S| g

o] a | -H n| o

(0] O O — | -H

a | -H “ « o |

o = O n n o

IR IR

Java 8 Java 9 Al || |O|lx
plain VH Plain Y ~|/ N|N|N|N
- VH Opaque |[Y|Y | Y N |N|N
- VH Acq/Rel | Y| Y | Y| Y |N | N
volatile |VH SeqCst |Y | Y | Y | Y |Y N
final - Y ~|~| N |N|Y
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Causality: Definition

Causality:
If A happened, then B happened too.

m By far the most basic guarantee made by most
memory models, extremely hard to accept as
the guiding principle

m The cornerstone of most (all?) distributed
consistency models

O redhat



Causality: Examples

Switching to JCStress in 3... 2... 1...
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Causality: Safe Publication

volatile int v;

X = s acquire | if (v == 1) {
y B int 1x = x;
«send» . o
Z = ..., int 1y = y;
v=1; int 1z = z;
}

m As if «commits to memory», but only for acg/rel pair
B release «COMMIts», acquire gets the committed
B acquire has to see release witness!

O redhat



Causality: Takeaway

1. Safe publication is the major (and simple) rule

m Identify your acquires and releases
m Check that acquires/releases are on all paths
m Learn this rule! Then learn it again!

2. The whole thing does not require JMM reasoning
= Hardly anyone applies «happens-before» correctly
m Hardly anyone can do it reliably
m Itis very easy to miss the racy access

O rednat



Causality: Overview

Java 8 Java 9
plain VH Plain

- VH Opaque
- VH Acq/Rel
volatile | VH SeqCst
final -

< < < < <|Defined

! < < < =| Coherence
= ~< ~< = =|Causality
= < = = =| Consensus
< = = = =|Resilient

X < =< =< Q| Atomic

O redhat



Consensus: Definition

Consensus:
Momentary agreement among threads about program state

m There are different powers of consensus, but
even the most basic Consensus-1 is useful.

m Consensus is mostly about multiple variables at
once. Otherwise, coherence is enough...

O rednat



Consensus: Examples

Switching to JCStress in 3... 2... 1...
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Consensus: Takeaway #6 Q%

1. Consensus is good
m Extremely useful to think about correctness
m Avoid non-SC data races by going volatile
m Sprinkle enough volatiles around your program, and it
eventually becomes data-race-free! /s

2. Consensus is bad

m Extreme costs to get SC in distributed systems
m Most examples so far were fine with just Release/Acquire!
m Relaxing SC is by far the most common optimization technique

O rednat
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Consensus: Overview

(O] > n |

O | P S| g

o] a | -H n| o

(0] O O — | -H

a | -H “ « o |

o = O n n o

IR IR

Java 8 Java 9 Al || |O|lx
plain VH Plain Y ~|/ N|N|N|N
- VH Opaque |[Y|Y | Y N |N|N
- VH Acq/Rel | Y| Y | Y| Y |N | N
volatile |VH SeqCst |Y | Y | Y | Y |Y N
final - Y ~|~| N |N|Y

O redhat



Finals: Idea

Finals:
«Declared immutable» fields, with additional semantics

m final-s are very special: able to hide data races

m The defense-in-depth strategy for concurrent
code: work even when external synchronization
is broken

O rednat



Finals: Examples

Switching to JCStress in 3... 2... 1...
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Finals: Takeaway

1. Safe construction rule

m No reason to omit final from effectively immutable fields?
m This would be a building block for benign races

2. «Defense in Depth»: extra safety in the face of data races

m Users are known to misread, misinterpret, misuse the docs
= Most API-external objects need to be safely constructed

2Why JVM does not do it itself then, Aleksey? @ redrat



Finals: Overview

(O] > n |
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Benign Races: Canonical Form

There are cases when races are very useful:

V v; // deliberately non-volatile

public V benignRaceInit() {
V1iv = v; // RULE 1: Read it once (ractily)
if (v == null) { // RULE 2: Check it is fine
lv = compute(); // RULE 3: Recover by safely constructing
v = 1lv; // Publish unsafely (rely on safe construction)

}

return 1v;

by

Forgo one of the rules, and you get the non-benign rac%
2 redhat



Benign Races: Real DK Code

public class AbstractMap<K, V> {
transient Set<K> keySet; // nom-volatile

public Set<K> keySet() {
Set<K> ks = keySet; // RULE 1: Read it once (racily)
if (ks == null) { // RULE 2: Check it's fine
ks = new KeySet(); // RULE 3: Recover by safely constructing
keySet = ks;
}
return ks;
}
}

Q redhat



Benign Races: Examples

Switching to JCStress in 3... 2... 1...
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Benign Races: Takeaway 8%

1. Benign races are useful, albeit dangerous tool

m Allows avoiding synchronized ops on critical paths!
m The only sane way to deliberately use races in the program?

2. Works only if three rules are followed:
m single (racy) read
m reliability check
m recovery path that safely constructs

O rednat



Benign Races: Overview

Java 8 Java 9
plain VH Plain

- VH Opaque
- VH Acq/Rel
volatile | VH SeqCst
final -

< < < < <|Defined

! < < < =| Coherence
= ~< ~< = =|Causality
= < = = =| Consensus
< = = = =|Resilient

X < =< =< Q| Atomic

O redhat



Summing Up: Rule #1: Safe Publication

Golden Rule:
Thread 1: store everything, then release
Thread 2: acquire, then read anything

m Automatically happens when publishing via
well-designed concurrency primitives

m Has to happen on all possible execution paths
m Has to happen in correct order

O rednat



Summing Up: Rule #2: Safe Construction

Golden Rule: a\
When in doubt, make all fields final.

m Makes the whole thing more resilient to races

m Think «defense in depth»: survive in case some path fails
to publish the instance safely

O rednat



Summing Up: Rule #3: Benign Races @

Golden Rule: >
Object is safely constructed, and there is single read.

m Exotic optimization technique, rarely needed

m The (only) easy way to avoid synchronization

O rednat



Summing Up: Rule #4: Exotic Modes @

Golden Rule: D
Don't.

m Just don't!

m There are cases where performance is so important, you
want to have weaker than volatile, but stronger than
plain - VarHandles to rescue!

O rednat



Summing Up: Workshop Plan (Provisional)

m Part I: Basic Bits
m JCStress: Why do it? How does it look?
m JMM: Looking at basic examples
(Coffee Break)
m Part II: Advanced Bits
m JCStress: How does it work? Why would you not do it manually?
m JMM: Looking at advanced examples
(Breathing Exercises)

m Part III: Fun Bits (optional)

m JCStress: Real JVM/JDK bugs discovered
m Breakout: Discussions, Future Work, etc.

O rednat



Part II. Advanced Bits



JCStress Advanced Topics



Architecture: Empirical Testing

Fidelity

(number of interesting samples)

Speed Coverage

(time spent at testing) (number of all cases)

Q redhat



Architecture: JCStress Architecture

Main VM (for entire run)

Capability Testing

Scheduler

VM Manager

Error Handling

Result Storage

Forked VM (one per test)

Task Loop 1

Task Loop 2

Worker Sync

Run Loop 1

Run Loop 2

Temporary Result Storage

Q rednat



Architecture: Guiding Principles

m Test fidelity:

m Generate most of the stuff at build time
m Assume the role of optimizing compiler where possible

m Test speed:

m Initialize most of the stuff in host VM
m Force forked VMs to do absolute minimum

m Test coverage:

m Run forked VMs in all the interesting modes
m Run forked VMs in all the interesting affinities

O redhat



Balancing Heap Sizes: Problem

Speed/Fidelity:
JCStress normally runs tens/hundreds of JVMs concurrently

S|
shad
shade

/home/shade/Install/jdk

1
1
1
1

157, 1736 thr; 64 running
.06 1.15

ade/Install/jdk-ea/bin/ja
hade/Install/jdk-ea/bin/]
/home/shade/T b
1, a/bin/java
/home/shade/Install/jdk-ea/bin/java
/home/shade/Install/jd
hade/Install/jd

+UnlockDiagnost

+UnlockDiagnost

+Unlo

+UnlockDiagno:
+UnlockDiagno:
+UnlockDiagno:

‘ rednat



Balancing Heap Sizes: Examples

Switching to JCStress in 3... 2... 1...
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Balancing Strides: Problem

Fidelity:
When heap size is set, tests may OOME!

@JCStressTest
@State
public class MyTest {
byte[] arr = new byte[1024%1024];

@Actor void actorl(I_Result r) {
int s = 0;
for (byte b : arr) s += b;
r.rl = s;
}
}

Q rednat



Balancing Strides: Examples

Switching to JCStress in 3... 2... 1...
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Balancing Thread Counts: Problem

S|
shad
shade

Speed/Fidelity:
JCStress normally runs tens/hundreds of JVMs concurrently

/home/shade/Install/jdk

1
1
1
1

157, 1736 thr; 64 running
.06 1.15

ade/Install/jdk-ea/bin/ja
hade/Install/jdk-ea/bin/]
/home/shade/T b
1, a/bin/java
/home/shade/Install/jdk-ea/bin/java
/home/shade/Install/jd
hade/Install/jd

+UnlockDiagnost

+UnlockDiagnost

+Unlo

+UnlockDiagno:
+UnlockDiagno:
+UnlockDiagno:

‘ rednat



Balancing Thread Counts: Examples

Switching to JCStress in 3... 2... 1...

Slide 80/159. «JCStress Workshop», Aleksey Shipilév, 2021, [ ‘ redhat



VM Modes: Problem

Coverage:
Some tests might fail only with some compilers

Hotspot VM has at least three ways to execute Java code:

m Interpreter (-Xint)
m C1 (baseline, client, -XX: -TieredStopAtLevel=1)
m C2 (optimized, server, -XX:-TieredCompilation)

O rednat



VM Modes: Examples

Switching to JCStress in 3... 2... 1...
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Split Compilation: Problem

Coverage:
Some outcomes only manifest in odd compilation conditions

O@Actor void actorl(II_Result r) {
// Compile with C1, one barrier scheme

}

@Actor void actor2(II_Result r) {
// Compile with C2, another barrier scheme

Q redhat



Split Compilation: Examples

Switching to JCStress in 3... 2... 1...
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Compiler Fuzzing: Problem

Coverage:
Many outcomes are compiler-induced.

Hotspot VM provides a few randomizing flags:

-XX:+StressLCM, -XX:+StressGCM — added for JCStress
-XX:+StressIGVN, -XX:+StressCCP - added later

Host VM probes which ones are available

Host VM mixes these as the separate configuration

O rednat



Compiler Fuzzing: Examples

Switching to JCStress in 3... 2... 1...
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Loops: Problem

Fidelity:

JVMs like short and active loops.

Main VM (for entire run)

Capability Testing

Scheduler

VM Manager

Error Handling

Result Storage

Forked VM (one per test)

Task Loop 1 Task Loop 2
I Worker Sync |
Run Loop 1 Run Loop 2

I Temporary Result Storage

O rednat



Loops: Examples

Switching to JCStress in 3... 2... 1...
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Rendezvous: Problem

Fidelity:
Tests are rarely symmetric, so actors outpace each other

IEEEES |

Stride Checkpoint Checkpoint Checkpoint Consuming
Prepare Results

Collision Windows

Q rednat



Rendezvous: Examples

Switching to JCStress in 3... 2... 1...
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Actor Affinity: Problem

Coverage:
Some outcomes manifest on some test topologies

Machine (126GB total)

Package L#0

| NUMANode L#0 P#0 (126GB)

| L3 (16MB) || L3 (16MB) BDE,tDI
X total

| L2 (512KB) | | L2 (512KB) | | L2 (512KB) || L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) |

| L1d (32KB) | | L1d (32KB) | | L1d (32KB) || L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) |

| L1i (32KB) || L1i (32KB) || L1i (32KB) || L1i (32KB) || L1i (32KB) || L1i (32KB) | L1i (32KB) | L1i (32kB)

Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#6 Core L#7

PU L#0 PU L#2 PU L#4 PU L#6 PU L#8 PU L#10 PU L#12 PU L#14
' P#0 P#1 @uumnal) P2 P#3 @ o) P#4 P#5 P#6 P#7

UL#1 PU L#3 PU L#5 PU L#7 PU L#9 PU L#11 PUL#13 PU L#15
P#32 P#33 P#34 P#35 P#36 P#37 P#38 P#39

Q redhat



Actor Affinity: Examples

Switching to JCStress in 3... 2... 1...
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Busy Waiting: Problem

Speed/Fidelity: Workers often have to wait actively.

# HARD # THREAD_SPIN_WAIT
0, 0 1,439,041,804 6.1% 0, 0 1,368,587,258 5.5%
0, 1 10,878,860,414 46.6% 0, 1 11,458,577,433 46.4Y
1, 0 10,967,111,106 47.0% 1, 0 11,834,865,693 47.9%
1, 1 23,684,276  0.1% 1,1 23,107,536  0.1%
# THREAD_YIELD # LOCKSUPPURT_PARK_NANOS
0, O 728,512,816 2.8% 0, 0 12,051,745 0.1%
0, 1 12,766,383,247 49.1% 0, 1 3,876,507,240 50.1%
1, 0 12,448,519,780 47.9% 1, 0 3,843,372,966 49.7%
1, 1 10,079,197  0.1% 1, 1 179,409 <0.1%

Q rednat



Busy Waiting: Examples

Switching to JCStress in 3... 2... 1...
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False Sharing: Problem

Fidelity:
Adjacent fields are false-shared,
decreasing the interesting outcomes frequency

volatile int a, b; // false shared?
Q@Actor void actorl(II_Result r) {

, -

@Actor void actor2(II_Result r) {

}

O rednat



False Sharing: Examples

Switching to JCStress in 3... 2... 1...
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Reusing Objects: Problem

Speed:
API demands @State and @Result objects are one-shot
Without reuse: With reuse:
RESULT SAMPLES FREQ RESULT SAMPLES

0, 0 64,113,081 5.9%
0, 1 522,012,200 47.8%
1, 0 504,635,282 46.2%
1, 1 1,608,557 0.1%

b

0, 0 1,368,587,258
0, 1 11,458,577,433
1, 0 11,834,865,693
1, 1 23,107,536

FREQ
5.5%
46 .49
47 .9Y%
0.1%

O redhat



Reusing Objects: Examples

Switching to JCStress in 3... 2... 1...
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Null-Pointer Checks: Problem

Fidelity:
NPE semantics induces orderings

void actorl(II_Result r) {
r.rl = x; // null-check "r"
X,

r.r2

}

O rednat



Null-Pointer Checks: Examples

Switching to JCStress in 3... 2... 1...
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JMM Advanced Topics



JMM Advanced Topics: JCStress Examples

If you are reading the slides offline,
we are about to look through these examples:

https://github.com/openjdk/jcstress/
tree/master/jcstress-samples/src/main/
java/org/openjdk/jcstress/samples/jmm/
advanced

O rednat


https://github.com/openjdk/jcstress/tree/master/jcstress-samples/src/main/java/org/openjdk/jcstress/samples/jmm/advanced
https://github.com/openjdk/jcstress/tree/master/jcstress-samples/src/main/java/org/openjdk/jcstress/samples/jmm/advanced
https://github.com/openjdk/jcstress/tree/master/jcstress-samples/src/main/java/org/openjdk/jcstress/samples/jmm/advanced
https://github.com/openjdk/jcstress/tree/master/jcstress-samples/src/main/java/org/openjdk/jcstress/samples/jmm/advanced

Synchronized Barriers: Examples

Switching to JCStress in 3... 2... 1...
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Multi-Copy Atomicity: Examples

Switching to JCStress in 3... 2... 1...
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Losing Updates: Examples

Switching to JCStress in 3... 2... 1...
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Misplaced Volatiles: Examples

Switching to JCStress in 3... 2... 1...
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Semi-Synchronized: Examples

Switching to JCStress in 3... 2... 1...
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Volatile Arrays: Examples

Switching to JCStress in 3... 2... 1...
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Acquire/Release Orders Wrong: Examples

Switching to JCStress in 3... 2... 1...
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Synchronized «Barriers»: Examples

Switching to JCStress in 3... 2... 1...
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Volatile «Barriers»: Examples

Switching to JCStress in 3... 2... 1...

Slide 111/159. «JCStress Workshop», Aleksey Shipilév, 2021, ‘ redhat



Volatile != Final: Examples

Switching to JCStress in 3... 2... 1...
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Summing Up: Takeaway

m JMM guarantees are weaker than a single
implementation might show

m You have to code to JMM rules, not to implementation
behavior!

O rednat



Part III. Extreme Bits



A Taste Of Real Bugs



Wrong Labels: Problem

int x; volatile int y;

Q@Actor void actorl() {

x =1;
y =1
}
@Actor void actor2(II_Result r) {
// int t = x;
r.rl =y;
r.r2 = x;
}

(1, 0) isillegal under JMM rules, but breaks when prior copy
«exists»! @ redrat



Wrong Labels: C1 Bug®

C1 CSE bug, ignores volatile read:

t = x;

rl = vy;

r2 = x;
...S0 it coalesced the read:

t = X,

rl = y;

r2 t;

3https://bugs.openjdk. java.net/browse/JDK-7170145 @ rednt


https://bugs.openjdk.java.net/browse/JDK-7170145

Immortal Referents: Problem

final WeakReference<Object> ref = new WeakReference<>(obj);

Q@Actor void actorl() {
while (ref.get() != null); // wait
}

OActor void actor2(II_Result r) {
ref.clear();

}

Expected behavior: test eventually terminates.
Actual behavior: test is stuck.

Q rednat



Immortal Referents: Compiler/GC Bug*

public abstract class Reference<T> {
private T referent;

public T get() { return referent; }

}
// just wait. .. if (ref.referent != null) {
// ...a little = while (true); // burn !
while (ref.get() != null); }

“https://bugs.openjdk. java.net/browse/JDK-7190310 @ rednt


https://bugs.openjdk.java.net/browse/JDK-7190310

Stuck Threads: Problem?

Q@Actor void actorl() {
while (!Thread.interrupted()); // watt
}

©0Signal void signal(Thread actorl) {
actorl.interrupt();

¥

Expected behavior: test eventually terminates
Actual behavior: test eventually terminates!

Q rednat



Stuck Threads: Problem!

private boolean check() { return Thread.interrupted(); }
O@Actor void actorl() {

while ('check()); // wait
}

0Signal void signal(Thread actorl) A{
actorl.interrupt();

by

Actual behavior; test is stuck!

Q rednat



Stuck Threads: C2 Bug®

m Thread.interrupted() used to check a flag in the native

QHotSpotIntrinsicCandidate
private native boolean isInterrupted(boolean ClearInterrupted);

m Access was written in C2 IR; effectively a plain read,
unless it is specifically written like a «volatile»

m Since then, it was rewritten to plain volatile field?

>https://bugs.openjdk. java.net/browse/JDK-8229516
https://bugs.openjdk.java.net/browse/JDK-8003135 @ rednt


https://bugs.openjdk.java.net/browse/JDK-8229516
https://bugs.openjdk.java.net/browse/JDK-8003135

Eat My Shorts: Problem?

short s;

Q@Actor void actorl() {
s = OxFFFF,;
}

OActor void actor2(S_Result r) {

r.ri = s;

}

short is supposed to be atomic:
rl1 € {020000,0zF FFF}, and it is indeed the case.

Q rednat



Eat My Shorts: Problem!

short s;

@Actor void actorl() {
s = OxFFFF;

}

OActor void actor2(BB_Result r) {

short t = s;

r.rl = (byte) ((t >> 0) & OxFF);

r.r2 = (byte) ((t >> 8) & OxFF);
}

Expected: (0200, 0200), (0xFF,0xFF)
Actual: (0200, 0200), (0xFF,0xFF), (0200, 0xF'F'), (02 F'F, 0200)

Q rednat



Eat My Shorts: Gradual Graph Rewrite

// 0Original code

short t = short_load(s.x);

r.r1 = byte_store(and(shift(t, 0), O0xFF)));
r.r2 = byte_store(and(shift(t, 8), O0xFF)));

// First round of simplifications
short t = short_load(s.x);

r.rl = byte_store(t);

r.r2 = byte_store(shift(t, 8));

// Final round of simplifications
r.rl = byte_store(unsigned_short_load(s.x));
r.r2 = byte_store(shift(signed_short_load(s.x), 8));

Q rednat



Eat My Shorts: C2 Bug’

short t = s.x;

r.rl = (byte) ((t >> 0) & OxFF);
r.r2 = (byte) ((t >> 8) & OxFF);

Compiles to:

movzwl Oxc(%rdx), %riid ;
mov %r11b,0xc (%rex) ;
movswl Oxc(%rdx), %ri10d ;
shr $0x8, %r10d ;

mov %r10b,0xd (%rcx) ;

read s.x

store r.rl

read s.z again!
shift

store r.r2

7https ://bugs.openjdk. java.net/browse/JDK-8000805 ‘ redhat


https://bugs.openjdk.java.net/browse/JDK-8000805

Volatile Clash: Problem

volatile double d = 0.0D;

@Actor void actorl() {
d = Double.toRawLongBits(-1L);
}

@Actor void actor2(D_Result r) {
r.ri =d;

¥

Expected: r1 € {020...0,0zF...F'}
Actual: that, plus garbage!

Q rednat



Volatile Clash: Native Unsafe Code

#define GET_FIELD_VOLATILE(obj, offset, type_name, v) \
oop p = JNIHandles: :resolve(obj); \
type_name v = OrderAccess::load_acquire( \
(volatile type_name*) index_oop_from_freld_offset_long(p, offset));

Unsafe_GetDoubleVolatile() compiles to:

mov 0x18 (%esp) , hebp
add hebp, heax

; field offset in Jeax
f1d1  (%eax)

fstpl 0x18(%esp)

Q redhat



Volatile Clash: Native Code Bug?

#define GET_FIELD_VOLATILE(obj, offset, type_mame, v) \
oop p = JNIHandles: :resolve(obj); \
type_name v = OrderAccess::load_acquire( \
(volatile type_name*) index_oop_from_field_offset_long(p, offset));

Unsafe_GetDoubleVolatile() actually compiled to:

mov 0x4 (heax) ,%hedx ; WHAT
mov (%eax) ,heax ; WHAT
mov heax,0x20 (%hesp) ; THE
mov hedx,0x24 (hesp) ; THE
f1dl  0x20(%esp) ; HELL
fstpl 0x18(%ebx) ; HELL

https://bugs.openjdk. java.net/browse/JDK-8016538 @ rednat



https://bugs.openjdk.java.net/browse/JDK-8016538

Power Dekker: Problem

volatile int x, y;

@Actor void actor1(II_Result r) {
x = 1;
r.rl =vy;

}

OActor void actor2(II_Result r) {
y =1
r.r2 = x;

by

SC executions: (r1,72) ¢ {(0,0)}
Qredhat



Power Dekker: Piece 1: Optimizing For Hardware

m POWER ISA has a lot of registers
m (take that, lousy x86)

m Hotspot PPC port is capitalizing on that

m Profitable to schedule loads as soon as possible
m ...unless something prevents it

O rednat



Power Dekker: Piece 2: Optimizing Barriers Bug”®

x =1;
rl =vy;

This produces, roughly:
MB — store(x, 1) — MB — load(rl, y) — MB

Barrier optimization code mistakenly removes the barrier
after volatile store, because it thinks there is a leading
membar before volatile load:

MB — store(x, 1) — load(rl, y) — MB

https://bugs.openjdk.java.net/browse/JIDK-8007898 @ rednt


https://bugs.openjdk.java.net/browse/JDK-8007898

AArch64 Zero barriers: Problem

int x; volatile long y;

Q@Actor void actorl() {
X 1;
y =1

+

OActor void actor2(IJ_Result r) {
r.ri V;
r.r2 X;

Observing (1,0) on AArch64!
Qredhat



AArch64 Zero barriers: Barrier Selection Bug'®

#ifdef ARM
#define LIGHT_MEM_BARRIER __kernel_dmb ()
#else // ARM
#ifdef PPC
#define LIGHT MEM_BARRIER __asm __volatile ("lwsync":::"memory")
#else // PPC
#1ifdef ALPHA
#define LIGHT MEM_BARRIER __sync_synchronize()
#else // ALPHA
#define LIGHT MEM_BARRIER __asm __volatile ("":::"memory")
#endif // ALPHA
#endif // PPC
#endif // ARM

Phttps://bugs. openjdk. java.net/browse/JDK-8253284

Q redhat


https://bugs.openjdk.java.net/browse/JDK-8253284

ARM32 Zero barriers: Problem

Actually, JCStress would not even pass initialization:

$ java -jar jcstress-tests-all-20200917.jar
Java Concurrency Stress Tests

Rev: ad66703e2ed0, built by buildbot with 11.0.5-testing at 2020-09-1

Caused by: java.lang.OutOfMemoryError:
Cannot reserve 8192 bytes of direct buffer memory
(allocated: 0, limit: -5290888278393214624)

O rednat



ARM32 Zero barriers: Atomicity Bug''

static void atomic_copy64(const volatile void *src,
volatile void *dst) {
jlong tmp;
asm volatile ("ldrexd %0, [%1]\n"
=yt (tmp)
"r"(src), "m"(src));
*(jlong *) dst = tmp;

"https://bugs.openjdk. java.net/browse/JDK-8253464

Q rednat
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Conclusions



Conclusions: In One Picture

Q redhat



Backup: JMM Arguments



Data Races: Formal Argument

class M { ... }
M m;
m = new MO ; |M 1m = m;
m = null; rl = (Im '= null);
r2 = (Im '= null);

O redhat



Data Races: Formal Argument e
class M { ... }
M m;
m = new MO; |M 1Im = m;
m = null; rl = (Im '= null);

r2 = (Im !'= null);

JMM allows only (F, F) and (T, T)

O rednat



Data Races: Formal Counter-Argument

Can’'t compiler «inline» the local variable?

class M { ... }
M m;
m = new M(Q);
m = null; rl = (m '= null);

r2 = (m !'= null);

O redhat



N

Data Races: Formal Counter-Argument Q26

Can’'t compiler «inline» the local variable?

class M { ... }
M m;
m = new M(Q);
m = null; rl = (m '= null);

r2 = (m !'= null),;
See, there is an obvious execution that yields (7', F') now!
. r(m) : Inull =, r(m) : null

O rednat



Data Races: Program Order

Program order ( PO ) provides the link
between the execution and the program in question

m PO - total order for any given thread in isolation

m PO consistency: PO is consistent with the source
code order in the original program

O redhat



Data Races: PO And Transformations

Original program:

M 1m = m; po
rl = (Im '= null); w(m, x) — w(m, null)
r2 = (Im !'= null); r(m) : x

Transformed program:
rl = (n !'= null); w(m, ) =, w(m, null)
r2 = (m != null);

r(m) :*—fiér(nﬂ DX

O redhat



Data Races: PO And Trans This execution does not relate
to the original program, oops

Original program:

M 1m = m; po
rl = (Im '= null); w(m, x) — w(m,null)
r2 = (Im !'= null); r(m) : x

Transformed program:
rl = (n !'= null); w(m, ) =, w(m, null)
r2 = (m != null);

r(m) :*—fiér(nﬂ L X

Q redhat



Data Races: PO And Trans This execution should be used
to reason about outcomes
for the transformed program

Original progrorm
M 1lm = m; '///)

po
rl = (Im '= null); w(m, x) — w(m, null)

r2 = (Im !'= null); r(m) : x

Transformed program:

rl = (n !'= null); 100n,*)i2%100n,nuﬂ)
r2 = (m !'= null);

r(m) :*—fiér(nﬂ DX

O rednat



Data Races: PO And Transformations

M 1Im

rl
r2

rl
r2

Original program:

po

Transforméd program:

PO consistency:
Original program has single read?
Relatable executions also have single read!

AY 7

(m, x) — w(m, null)

,null)
Lk

O redhat



Coherence: Example 2.1

int x;

x=1;|rl1=x; // n
r2 = x; // ro

O redhat



Coherence: Example 2.1

int x;
x=1;|rl1=x; // n
r2 =x; // re

JMM allows observing (1,0), see:

w(z,1) .. m(z): 1 = ro(z) : 0

O rednat



Coherence: Example 2.1

int x;
x=1;|rl1=x; // n
r2 =x; // re

JMM allows observing (1,0), see:
w(z,1) ... r(z): 1 =, ro(x) : 0

This execution is PO consistent, both reads are here!

O rednat



Coherence: Consistency Rules

PO consistency affects the structure of the execution.
What we need: a consistency rule that affects values
observed by the actions.

In JMM, there are two of them:
1. Happens-before ( HB) consistency

2. Synchronization order (SO ) consistency

O rednat



Coherence: Consistency Rules

PO consistency affects the structure of the execution.
What we need: a consistency rule that affects values
observed by the actions.

In JMM, there are two of them:
1. Happens-before ( HB) consistency

2. Synchronization order (SO ) consistency < now!

O rednat



Coherence: SO - Synchronization Order

SO covers all synchronization actions.
volatile read/write, lock/unlock, etc.

m SO is a total order («All SA actions relate to each other»)

po

m SO-PO consistency: — and — agree

m SO consistency: reads see only the latest write in =

O rednat



Coherence: SO - Synchronization Order

SO covers all synchronization actions.
volatile read/write, lock/unlock, etc.

m SO is a total order («All SA actions relate to each other»)

po

m SO-PO consistency: =, and > agree

m SO consistency: reads see only the latest write in =
Just what coherence wants!

O rednat



Coherence: Example 2.2

volatile int x;

x=1;|rl =x; // n
r2 =x; // 7o

O redhat



Coherence: Example 2.2

volatile int x;
x=1;|rl =x; // m
r2 =x; // re

Valid executions give (0,0), (1, 1), (0, 1):?

w(x, 1) = ri(x): 1 = ro(x) 1
ri(z): 0 if%'u(zgl)-:i+7q(x): 1

ri(x): 0 :fé»rgcx): 0 —53+1U(x,1)

aProving no other outcomes exist is left as an exercise for the reader

O rednat



Causality: SW - Synchronizes-With Order

When one SA «sees» the value of another SA,
they are said to be in «synchronizes-with» ((SW) relation

m SW is a partial order
m SW connects the operations that «see» each other
m Acts like the «bridge» between the threads

O rednat



Causality: HB - Happens-Before Order

HB is a transitive closure
over the union of PO and SW

m HB is a partial order
(Translation: not everything is connected)

m HB consistency: reads observe either:

. . hb
the last write in —, or
any other write, not ordered by i>

O rednat



Causality: Example 3.1

int x;
volatile int y;

x=1;|rl =y;
y=1;]|r2 = x;

O redhat



Causality: Example 3.1 :;

int x;
volatile int y;
x=1;|rl =y,
y=1;|1r2 = x;

We are dealing with this class of executions:

1U(x,1)-jf+ w(y,1) ... r(y):* =, r(z) : *

O rednat



Causality: Example 3.1

int x;
volatile int y;
x=1;|rl =y;
y=1;,]r2 = x;

Racy subclass:

1u(x,1)-jgéqu(y,1) .. r(y): 0 —E1>r(x): 0
1u(x,1)-lﬁ+'u(y,1) .. r(y): 0 —E1>T($)Z 1

O redhat



Causality: Example 3.1

int x;
volatile int y;
x=1;|rl =y;
y=1;,]r2 = x;

Non-racy subclass:

w(zx, 1) —Ti%zu(y,]) _EE% r(y): 1 —EE+ r(x) :

1U(x,1)-lﬁ+/u(y,1)-:ﬁ+ r(y) : 12 r(z):

1
0

N
& 0

O redhat



Causality: Look Closer, #1

Happens-before is defined over actions,
not over statements: notice no HB between volatile ops!

w(z, 1) Lw(y, 1) ... 7(y): 0 i> r(z): 0

A T
N ’

not required to see this

O rednat



Causality: Look Closer, #2

This violates HB consistency:

hb hb hb
w(z, 1) | — w(y,1) —r(y): 1 —>|r(x): 0

should have seen this!

Causality: Observing the volatile store causes observing
everything stored before it

O redhat



Causality: Example 3.2

Notice the order

int

volatile int y;

y =1
x = 1;

is different
X,
rl = x;
r2 =y,

Q redhat



Causality: Example 3.2 [otice the order

is different

int x;

volatile int y;
y=1;|rl = x;
x=1;,|1r2 =y,

Hey, look how (1,0) is allowed:

1U(y,1)-23+10($,1) o r(x) 12 r(y): 0

O rednat



Causality: Example 3.2

Notice the order

is different
int x;
volatile int y;
y=1;|rl = x;
x=1;,|1r2 =y,

Hey, look how (1,0) is allowed:

w(y, 1) —Ti%1u(x,1) .

r(x) : 12, r(y): 0

Look: irrelevant that y is volatilel!

O redhat



Consensus: Example 4.1

volatile int x, y;

int r3 = x;
int r4

x=1;]y=1; int rl = y;

int r2 = x;

Il
<

HB alone allows seeing (1,0, 1,0):

w(y, 1) =, ri(y) : 1 N r3(z)

: 0
hb hb
w(z,1) —> ry(x) : 1 —> r4(y) : 0

O rednat



Consensus: SC

Sequential Consistency (SC): (def.)

«...the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in
the order specified by its program»

O rednat



Consensus: SO - Synchronization Order

SO covers all synchronization actions.
volatile read/write, lock/unlock, etc.

m SO is a total order («All SA actions relate to each other»)

po

m SO-PO consistency: =, and > agree

m SO consistency: reads see only the latest write in =
Just what Sequential Consistency wants!

O rednat



Finals: Example 5.1

class M { final int x = 42; }
M m;

m=mnew MO |M Im =m

if (Im '= null)

rl = Im.x
else
rl =1

O rednat



Finals: Example 5.1

class M { final int x = 42; }
M m;

m=mnew MO |M Im =m

if (Im '= null)

rl = Im.x
else
rl =1

JMM guarantees seeing the value of final field here:
rl € {1,42}

O rednat



Finals: Example 5.1

class M { final int x = 42; }
M m;

m=mnew MO |M Im =m

if (Im '= null)

rl = Im.x
else
rl =1

Special rule, if x is a final field:

zu(x,42)<lf+ r(x): 42
O rednat



Finals: Example 5.2

class M { wolatile int x = 42; }
M m;

m=new MO |M 1Im = m

if (Im '= null)

rl = Im.x
else
rl =1

O rednat



Finals: Example 5.2

class M { wolatile int x = 42; }
M m;

m=new MO |M 1Im = m

if (Im '= null)

rl = Im.x
else
rl =1

JMM allows (0) here:

1U(CWL1;42)-EE+QU(cnu7n) . r(nz):lnz—22+7(lnyaﬂ 0
O rednat



Finals: Example 5.2

class M { wolatile int x = 42; }
M m;

m=mnew MO |M Im =m

if (Im !'= null)

rl = Im.x
else
rl =1

volatile ¢ final
final ¢ volatile

O redhat



Finals: Safe Construction

Special rule for final fields:

, hb
WTILes fingr — T€AdS final

The derivation for that rule is complicated.

Two absolutely necessary things:
m Field is final
m Constructor does not publish this

O rednat
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