Shenandoah GC
Part II: I See You Have Your Fancy GC

Aleksey Shipilév

shade@redhat.com
@shipilev

Safe Harbor / Tuxaa N'aBaHb

Anything on this or any subsequent slides may be a lie. Do
not base your decisions on this talk. If you do, ask for
professional help.

Bcé uto yrogHO Ha 3TOM cnaije, Kak 1 Ha BCex CiefyoLnx,
MOXeT 6bITb BpaHbEM. He npvHUMaliTe peLlleHunin Ha
OCHOBaHMWM 3TOro Aoknaga. Ecav Bcé-Takm pewunte NpUHSATD,
TO HallMUTe NpodpeccnoHanos.

Q redhat

Usual Disclaimers
This talk...

1. ...does not explain the GC basics, but rather covers the
runtime parts needed for collector to work. See «Part I»
for basics!

2. ...covers the runtime interface itself, and sometimes
discusses GC and runtime tricks to mitigate problems.
Shenandoah, ZGC, and other collectors need them!

3. ...is specific to current state of OpenJDK and Hotspot.
Future work may render many of these issues fixed!

Q redhat

Overall

Overall: When Everything Is Perfect

LRUFragger, 100 GB heap, ~ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 0.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms
Pause Final Update Refs 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms
Q redhat

Overall: When Everything Is Perfect

LRUFragger, 100 GB heap, ~ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 0.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms
Pause Final Update Refs 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms
Q redhat

Overall: When Something Is Not So Good

Worst-case cycle in one of the workloads:

Pause Init Mark 4.915ms

Concurrent marking 794M->794M(4096M) 95.853ms

Pause Final Mark 30.876ms

Concurrent cleanup 795M->795M(4096M) 0.170ms

Concurrent evacuation 795M->796M(4096M) 0.197ms

Pause Init Update Refs 0.029ms

Concurrent update references 796M->796M(4096M) 28.707ms
Pause Final Update Refs 2.764ms

Concurrent cleanup 796M->792M(4096M) 0.372ms
Q redhat

Overall: Pause Taxonomy

I Mark I Compact

Init CM Finish CM

O redhat

Overall: Pause Taxonomy

I Compact

Init CM Finish CM

I‘ Evacuate ‘ Update Refs I

Init CM Finish CM Init UR Finish UR

O redhat

Overall: Pause Taxonomy

I Compact

Init CM Finish CM

Evacuate ‘ Update Refs I

Finish CM ™™ "+<w_____| Init UR Finish UR

Init CM

Sync VM Operation Cleanup

O redhat

Overall: Pause Taxonomy

I Compact

Init CM Finish CM

Evacuate ‘ Update Refs I

lnitcM L Finish CM """===-o_ | Init UR Finish UR
Sync VM Operation Cleanup
> <
"GC time":
-Xlog:gc

A 4
a

Actual pause time:
-Xlog:safepoint

O redhat

Safepoint Prolog

Safepoint Prolog: Ideas

1. Make sure changing the heap is safe
2. Enable cooperative thread suspension
3. Have the known state points: e.g. where are the pointers

push %rbx
LOQOP:
inc Yrax
test (Yrip, 0x488313) # safepoint poll
Jrbx ts ptr, (4rsp) is ptr
cmp %rax, (%rbx, 8)
j1 LOOP

Q redhat

TTSP: Pause Taxonomy

I Compact

Init CM Finish CM

Evacuate ‘ Update Refs I

Finish CM ™™ "+<w_____| Init UR Finish UR

Init CM

Sync VM Operation Cleanup

O redhat

TTSP: Pause Taxonomy

I Compact

Init CM Finish CM

Evacuate ‘ Update Refs I

Finish CM ™™ "+<w_____| Init UR Finish UR

Init CM

Sync VM Operation Cleanup

O redhat

TTSP: Definition

Time To Safepoint

| Sync

VM Operation

Cleanup

—_ P

\ = /
\,\\\ /

VM Thread

—

I,

\'" JavaThread 1

-

I,

Java Thread 2

TTSP: Time between VM Thread decision to make a safepoint,
until all Java threads have reacted

O redhat

TTSP: Definition

Time To Safepoint

| Sync VM Operation Cleanup
""""" < 4
W VM Thread

\ T~d ’
1 ~

\
1 .
\

Java Thread 1

I,

Java Thread 2

-

Some threads are still happily executing after safepoint
request, having not observed it yet

O redhat

TTSP: Long Loops

In tight loops, safepoint poll costs are very visible!
Solution: eliminate safepoint polls in short cycles

inc Yrax
cmp %rax, $100
j1 LOOP

Q redhat

TTSP: Long Loops

In tight loops, safepoint poll costs are very visible!
Solution: eliminate safepoint polls in short cycles

inc Yrax
cmp %rax, $100
j1 LOOP

How short is short, though?

Q redhat

TTSP: Long Loops

In tight loops, safepoint poll costs are very visible!
Solution: eliminate safepoint polls in short cycles

inc Y%rax
cmp %rax, $100
j1 LOOP

How short is short, though?
Hotspot’s answer: Counted loops are short!

Q redhat

TTSP: Long Loops

int[] arr;

O@Benchmark
public int test() throws InterruptedException {
int r = 0;
for (int i : arr)
r = (i * 1664525 + 1013904223 + r) % 1000;
return r;

3

java -XX:+UseShenandoahGC -Dsize=10’000’000
Performance: 35.832 +- 1.024 ms/op

Total Pauses (G) = 0.69 s (a = 26531 us)
Total Pauses (N) = 0.02 s (a 734 us)

O redhat

TTSP: -XX:+UseCountedLoopSafepoints

The magic VM option to keep the safepoints in counted loops!
...with quite some throughput overhead :(

-XX:+UseShenandoahGC -XX:-UseCountedLoopSafepoints
Performance: 35.832 +- 1.024 ms/op

Total Pauses (G) = 0.69 s (a = 26531 us)

Total Pauses (N) 0.02 s (a 734 us)

-XX:+UseShenandoahGC -XX:+UseCountedLoopSafepoints
Performance: 38.043 +- 0.866 ms/op

Total Pauses (G) = 0.02 s (a 811 us)

Total Pauses (N) 0.02 s (a 670 us)

Q redhat

TTSP: Loop Strip Mining

Make a smaller bounded loop without the safepoint polls
inside the original one:

for (c : [0, L] by M) {

for (¢ : [0, L]) { for (k : [0: M]) {
use(c) ; s use(c + k);
<safepoint poll> }
} <safepoint poll>
}

Amortize safepoint poll costs without sacrificing TTSP!

Q redhat

TTSP: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024

Total Pauses (G)
Total Pauses (N)

0.69 s (a
0.02 s (a

ms/op
= 26531 us)
734 us)

Q redhat

TTSP: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024

Total Pauses (G) =
Total Pauses (N)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1

0.69 s (a
0.02 s (a

ms/op

26531 us)
734 us)

Performance: 38.043 +- 0.866 ms/op

Total Pauses (G) =
Total Pauses (N) =

0.02 s (a
0.02 s (a

811 us)
670 us)

O redhat

TTSP: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024 ms/op
Total Pauses (G) = 0.69 s (a = 26531 us)
Total Pauses (N) 0.02 s (a 734 us)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1
Performance: 38.043 +- 0.866 ms/op

Total Pauses (G) = 0.02 s (a = 811 us)
Total Pauses (N) = 0.02 s (a = 670 us)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1000
Performance: 34.660 +- 0.657 ms/op

Total Pauses (G) = 0.03 s (a = 842 us)

Total Pauses (N) = 0.02 s (a = 682 us)

O redhat

TTSP: Runnable Threads

The suspension is cooperative:
every runnable thread has to react to a safepoint request

m Non-runnable threads are already considered at
safepoint: all those idle threads that are WAITING,
TIMED_WAITING, BLOCKED, etc are safe already

m Lots of runnable threads: each thread should get
scheduled to roll to safepoint

Q redhat

TTSP: Runnable Threads Test

for (int 1 : arr) {
r = (1 * 1664525 + 1013904223 + r) % 1000;
}

Each thread needs scheduling to roll to safepoint:

java -XX:+UseShenandoahGC -Dthreads=16
Total Pauses (G) 0.30 s (a 1529 us)
Total Pauses (N) 0.23 s (a 1166 us)

Q redhat

TTSP: Runnable Threads Test

for (int 1 : arr) {
r = (1 * 1664525 + 1013904223 + r) % 1000;
}

'ﬁ? Each thread needs scheduling to roll to safepoint:

java -XX:+UseShenandoahGC -Dthreads=16
Total Pauses (G) = 0.30 s (a = 1529 us)
Total Pauses (N) = 0.23 s (a = 1166 us)

java -XX:+UseShenandoahGC -Dthreads=1024
Total Pauses (G) 5.14 s (a = 36689 us)
Total Pauses (N) 0.22 s (a 1564 us)

O redhat

TTSP: Latency Tips g)!

1. Safepoint monitoring is your friend

m Enable -XX:+PrintSafepointStatistics along with GC logs
m Use GC that tells you gross pause times that include safepoints

Q redhat

TTSP: Latency Tips g)!

1. Safepoint monitoring is your friend

m Enable -XX:+PrintSafepointStatistics along with GC logs
m Use GC that tells you gross pause times that include safepoints

2. Trim down the number of runnable threads

m Overwhelming the system is never good
m Use shared thread pools, and then share the thread pools

Q redhat

TTSP: Latency Tips g)!

1. Safepoint monitoring is your friend

m Enable -XX:+PrintSafepointStatistics along with GC logs
m Use GC that tells you gross pause times that include safepoints

2. Trim down the number of runnable threads

m Overwhelming the system is never good
m Use shared thread pools, and then share the thread pools

3. Watch TTSP due to code patterns, and then enable:

B -XX:+UseCountedLoopSafepoints for JDK 9-
B -XX:LoopStripMiningIters=# for JDK 10+

Q redhat

GC Roots

GC Roots: Pause Taxonomy

I Compact

Init CM Finish CM

Evacuate ‘ Update Refs I

Finish CM ™™ "+<w_____| Init UR Finish UR

Init CM

Sync VM Operation Cleanup

O redhat

GC Roots: Pause Taxonomy

Init CM

Init CM

Finish CM

Evacuate

Compact

‘ Update Refs I

VM Operation

Cleanup

Roots

Finish UR

O redhat

GC Roots: What Are They, Dude

Def: «GC Root», slot with implicitly reachable object

Def: «Root set», the complete set of GC roots

«Implicitly reachable» = reachable without Java objects
m Popular: static fields, «thread stacks», «local variables»
m Less known: anything that holds Java refs in native code

Q redhat

GC Roots: There Are Lots of Them

7dk10/bin/java -XX:+UseShenandoahGC -Xlog:gctstats

Pause Init Mark (G) = 0.07 s (a = 7011 us)
Pause Init Mark (N) = 0.06 s (a = 6052 us)
Scan Roots = 0.06 s (a = 5887 us)
S: Thread Roots 0.01 s (a = 1031 us)

S: String Table Roots 0.02 s (a = 1647 us)

S: Universe Roots 0.00 s (a = 2 us)

S: JNI Roots 0.00 s (a = 8 us)

S: JNI Weak Roots 0.00 s (a = 275 us)

S: Synchronizer Roots 0.00 s (a = 4 us)

S: Management Roots 0.00 s (a = 2 us)

S: System Dict Roots 0.00 s (a = 329 us)

S: CLDG Roots = 0.02 s (a = 1583 us)

S: JVMTI Roots = 0.00 s (a = 1 us)

O redhat

Thread Roots: Why

void k() {
Object o1l = get();
m();
workWith(ol) ;

b

void m() {
Object 02 = get();
// <gc safepoint here>
workWith(o2) ;

}

Once we hit the safepoint, we
have to figure that both o1
and o2 are reachable

Need to scan all activation

records up the stack looking
for references

Q redhat

Thread Roots: Trick 1, Local Var Reachability’

Trick: computing the oop
maps does account the

void m() {
Object 02 = get(); variable liveness!
// <gc safepoint here>
doSomething () ; Here, 02 would not be
¥ exposed at safepoint, making

the object reclaimable

"Thttps://shipilev.net/jvm-anatomy-park/8-local-var-reachability/ @ rednat

https://shipilev.net/jvm-anatomy-park/8-local-var-reachability/

Thread Roots: Trick 2, Saving Grace

"thread-100500" #100500 daemon prio=5 os_prio=0 tid=0x13371337
nid=0x11902 waiting on condition TIMED_WAITING

at sun.misc.Unsafe.park(Native Method)

- parking to

at
at
at
at
at
at
at

java.
java.
java.
java.
java.
java.
java.

util.
util.
util.
util.
util.
util.
lang.

wait for

concurrent.
concurrent.
concurrent.
concurrent.
concurrent.
concurrent.

Thread.run

<0x0000000081e39398>

locks.LockSupport.parkNanos
locks.AbstractQueuedSynchronizer$ConditionQb]
LinkedBlockingQueue.poll
ThreadPoolExecutor.getTask
ThreadPoolExecutor.runWorker
ThreadPoolExecutor$Worker.run

Most threads are stopped at shallow stacks

Q redhat

Thread Roots: GC Handling

GC threads scan Java threads in parallel:
N GC threads scan K Java threads

Thread Roots Count =
~ Average Stack Depth X Java Thread Count

Corollaries:
m Java Thread Count < Count(CPU) - excellent
m Small Average Stack Depth - excellent

Q redhat

Thread Roots: Latency Tips Q20

1. Make sure only a few threads are active

m Ideally, N_CPU threads, sharing the app load
m Natural with thread-pools: most threads are parked at shallow
stack depths

Q redhat

Thread Roots: Latency Tips Q20

1. Make sure only a few threads are active

m Ideally, N_CPU threads, sharing the app load
m Natural with thread-pools: most threads are parked at shallow
stack depths

2. Trim down the thread stack depths

m Calling into thousands of methods exposes lots of locals
m Tune up inlining: less frames to scan

Q redhat

Thread Roots: Latency Tips Q20

1. Make sure only a few threads are active

m Ideally, N_CPU threads, sharing the app load
m Natural with thread-pools: most threads are parked at shallow
stack depths

2. Trim down the thread stack depths

m Calling into thousands of methods exposes lots of locals
m Tune up inlining: less frames to scan

3. Wait for and exploit runtime improvements

m Grey thread roots and concurrent root scans?
m Per-thread scans with handshakes?

Q redhat

Sync Roots: Why

Unlocked

001

Progressively heavier lock metadata:

Locking

unlocked

Q redhat

Sync Roots: Why

Locking
Unlocking
Unlocked Biased
001 Thread ID 101

Progressively heavier lock metadata:
unlocked, biased

Q redhat

Sync Roots: Why

Locking
... IS
Unlocking
s
Unlocked Biased Lightweight (thin)
001 Thread ID 101 &LockRcrd | 000
LockRecord

(somewhere on stack)

Progressively heavier lock metadata:
unlocked, biased, thin locks

Q redhat

Sync Roots: Why

Locking
... IS
Unlocking
s
Unlocked Biased Lightweight (thin) Heavyweight (fat)
001 Thread ID 101 &LockRcrd | 000 &ObjMon | 010

LockRecord ObjectMonitor

(somewhere on stack)

Ultimately, ObjectMonitor that associates object

with its fat native synchronizer, in both directions o
5 rednat

Sync Roots: Why

Locking
... IS
Unlocking
s
Unlocked Biased Lightweight (thin) Heavyweight (fat)
001 Thread ID 101 &LockRcrd | 000 &ObjMon | 010

LockRecord ObjectMonitor

(somewhere on stack)

Ultimately, ObjectMonitor that associates object

with its fat native synchronizer, in both directions o
2 redhat

Sync Roots: Syncie-Syncie Test

OBenchmark
public void test() throws InterruptedException {
for (SyncPair pair : pairs) {
pair.move();
}
}

static class SyncPair {
int x, y;
public synchronized void move() {
X+t y--;
}
}

O redhat

Sync Roots: Depletion Test

static class SyncPair {
int x, y;
public synchronized void move() {
X+ y--;
}
}

java -XX:+UseShenandoahGC -Dcount=1’000’000

Pause Init Mark (N) = 0.00 s (a = 2446 us)
Scan Roots = 0.00 s (a = 2223 us)
S: Synchronizer Roots = 0.00 s (a = 896 us)

O redhat

Sync Roots: Latency Tips Q20

1. Avoid contended locking on lots of synchronized-s

m Most applications do seldom contention on few monitors
m Replace with j.u.c.Lock, Atomics, VarHandle, etc. otherwise

Q redhat

Dy

Sync Roots: Latency Tips Q%

1. Avoid contended locking on lots of synchronized-s

m Most applications do seldom contention on few monitors
m Replace with j.u.c.Lock, Atomics, VarHandle, etc. otherwise

2. Have more frequent safepoints

m Counter-intuitive, but may keep inflated monitors count at bay
m (More on that later)

Q redhat

Fry

Sync Roots: Latency Tips Q20

1. Avoid contended locking on lots of synchronized-s

m Most applications do seldom contention on few monitors
m Replace with j.u.c.Lock, Atomics, VarHandle, etc. otherwise

2. Have more frequent safepoints

m Counter-intuitive, but may keep inflated monitors count at bay
m (More on that later)

3. Exploit runtime improvements

® -XX:+MonitorInUseLists, enabled by default since JDK 9
m In-progress: piggybacking on thread scans (Shenandoah)

Q redhat

Class Roots: Why

C++: ClassLoaderData

k— —
Class Word /
Field 1 (next) (next)

Field 2 Static Field 1 Static Field 1
Field 3 Static Field 2 Static Field 2
Java Heap: Object C++: Klass C++: Klass

Static fields are stored in class mirrors outside the objec2
5 redhat

Class Roots: Why

C++: ClassLoaderData

k— —
Class Word /
Field 1 (next) (next)

Field 2 Static Field 1 Static Field 1
Field 3 Static Field 2 Static Field 2
Java Heap: Object C++: Klass C++: Klass

Even without instances, we need to visit static fields o
2 redhat

Class Roots: Enterprise Hello World Test

@Setup
public void setup() throws Exception {
classes = new Class[count];
for (int ¢ = 0; c < count; c++) {
classes[c] = ClassGenerator.generate();
}
}

java -XX:+UseShenandoahGC -Dcount=100’000
Pause Init Mark (G) = 0.17 s (a = 6068 us)
Pause Init Mark (N) 0.15 s (a = 5484 us)
s
s

Scan Roots = 0.15 (a = 5233 us)

S: CLDG Roots 0.01 432 us)

(a

Q redhat

Class Roots: Latency Tips

1. Avoid too many classes

m Merge related classes together, especially autogenerated
m If not avoidable, make sure classes are unloaded

Q redhat

Class Roots: Latency Tips Q20

1. Avoid too many classes

m Merge related classes together, especially autogenerated
m If not avoidable, make sure classes are unloaded

2. Avoid too many classloaders

m Roots are walked by CLData, more CLs, more CLData to walk
m If not avoidable, make sure CLs are garbage-collected

Q redhat

Dy

Class Roots: Latency Tips Q8

1. Avoid too many classes

m Merge related classes together, especially autogenerated
m If not avoidable, make sure classes are unloaded

2. Avoid too many classloaders

m Roots are walked by CLData, more CLs, more CLData to walk
m If not avoidable, make sure CLs are garbage-collected

3. Exploit runtime improvements

m Avoiding oops in native structures (JDK 9+ onwards)
m Parallel classloader data scans (Shenandoah)
m Concurrent class scans?

Q redhat

Fry

String Table Roots: Why

StringTable is native, and references String objects
class String {
bﬁglic native String intern();
. C
class StringTable : public RehashableHashtable<oop, mtSymbol> {

static oop intern(Handle h, jchar* chars, int length, ...);

Q redhat

String Table Roots: Intern Test

@Setup
public void setup() {
for (int ¢ = 0; ¢ < size; c++)
list.add(("" + ¢ + "root").intern());

©@Benchmark
public Object test() { return new Object(); }

5dk10/bin/java -XX:+UseShenandoahGC -Dsize=1’000’000

Pause Init Mark (G) = 0.30 s (a = 10698 us)
Pause Init Mark (N) = 0.29 s (a = 10315 us)
Scan Roots = 0.28 s (a = 10046 us)

S: String Table Roots 0.25 s (a

8991 us)

O redhat

String Table Roots: Latency Tips

1. Do not use String.intern()
m Itis almost never worth it
= Roll on your own deduplicator/interner

N
& 0

Q redhat

String Table Roots: Latency Tips g)!

1. Do not use String.intern()
m Itis almost never worth it
= Roll on your own deduplicator/interner

2. Watch out for StringTable rehashing and cleanups
B -XX:StringTableSize=# is your friend here
m Surprise: -XX:-ClassUnloading disables StringTable cleanup
m Surprise: StringTable would need to rehash under STW

Q redhat

String Table Roots: Latency Tips g)!

1. Do not use String.intern()
m Itis almost never worth it
= Roll on your own deduplicator/interner

2. Watch out for StringTable rehashing and cleanups
B -XX:StringTableSize=# is your friend here
m Surprise: -XX:-ClassUnloading disables StringTable cleanup
m Surprise: StringTable would need to rehash under STW

3. Wait for more runtime improvements

m Move StringTable to Java code?
m Concurrent StringTable scans?
m Resizable StringTable?

Q redhat

Weak References

Weak References: Pause Taxonomy

Init CM

Init CM

I Compact

Finish CM

Evacuate ‘ Update Refs I

Finish CV ™=~ Init UR Finish UR

VM Operation Cleanup

Roots

O redhat

Weak References: Pause Taxonomy

Init CM

Init CM

I Compact

Finish CM

Evacuate ‘ Update Refs I

__________ Finish CM ""*===--._____Init UR Finish UR
Sync VM Operation Cleanup
Roots | Weak Refs

O redhat

Weak References: What, How, When

The single most GC-sensitive language feature:
soft/weak/phantom references and finalizers

m Usually named «weak references», in contrast to «strong
references»: soft, weak, finalizable, phantom are the
subtypes

m Finalizable objects are yet another synthetic weak
reachability level: modeled with j.1.ref.Finalizer

Q redhat

Weak References: How Do They Work?

Suppose we have the
object graph where
some objects are not

strongly reachable

1 . .
e.g. treating Reference.referent as normal field
g g ‘ redhat

Weak References: How Do They Work?

strongly
reachable

ctron Scanning through? the
gly .
reachable Weak references yields
strongly reachable
heap: normal GC cycle

strongly
reachable

strongly
reachable

2 . .
e.g. treating Reference.referent as normal field
g g ‘ redhat

Weak References: How Do They Work?

Back to square one:
start from unmarked
heap...

1 . .
e.g. treating Reference.referent as normal field
g g ‘ redhat

Weak References: How Do They Work?

strongly
reachable

But then, do not mark
through the weak refs,
but discover and
record them separately

1 . .
e.g. treating Reference.referent as normal field
g g ‘ redhat

Weak References: How Do They Work?

strongly
reachable

Now, we can iterate
softly
reachable over soft-refs, and
treat all non-marked
referents as softly
reachable...

1 . .
e.g. treating Reference.referent as normal field
g g ‘ redhat

Weak References: How Do They Work?

strongly
reachable

Rinse and repeat for
softly .
reachable other subtypes, in
order, and after a few
weakly iterations we have all
reachable
weak refs processed

1 . .
e.g. treating Reference.referent as normal field
g g ‘ redhat

Weak References: How Do They Work?

strongly
reachable
Rinse and repeat for
softly .
reachable other subtypes, in
order, and after a few
weakly iterations we have all

reachable
weak refs processed

phantomly
reachable

1 . .
e.g. treating Reference.referent as normal field
g g ‘ redhat

Weak References: Reachability Tricks

There are four cases: the reference itself can be
(un)reachable, and the referent can be (un)reachable

Q redhat

Weak References: Reachability Tricks

SR-1 and SR-4 are unreachable.
Discovery would never visit them, stop

Q redhat

Weak References: Reachability Tricks

Trick «Precleaning»: SR-2 is reachable, and its referent is
reachable. No need to scan, remove from from discovered list

Q redhat

Weak References: Reachability Tricks

SR-3 is reachable, but referent is not.
We may clear the referent, and abandon the subgraph

Q redhat

Weak References: Reachability Tricks

H

Trick «Soft»: SR-3 is reachable, but referent is not. We decide
to keep referent alive. This means we have to mark through

Q redhat

Weak References: Reachability Tricks

H

SR-3 is reachable, but referent is not. We decide to keep
referent alive. For phantom refs it means marking at pause

Q redhat

Weak References: Recap, Phases

m Unreachable references: excellent

Reference | Referent Discovery | Process | Enqueue
(concurrent) | (STW) (STW)
Dead Alive no no no
Dead Dead no no no

Q redhat

Weak References: Recap, Phases

m Unreachable references: excellent
m Reachable referents: good, little overhead

Reference | Referent Discovery | Process | Enqueue
(concurrent) | (STW) (STW)
Dead Alive no no no
Dead Dead no no no
Alive Alive yes maybe no

Q redhat

Weak References: Recap, Phases

m Unreachable references: excellent
m Reachable referents: good, little overhead
m Unreachable referents: bad, lots of work during STW

Reference | Referent Discovery | Process | Enqueue
(concurrent) | (STW) (STW)
Dead Alive no no no
Dead Dead no no no
Alive Alive yes maybe no
Alive Dead yes YES YES

Q redhat

Weak References: Recap, Keep Alive

When referent is unreachable, should we make it reachable?

Type Keep Alive Comment

JDK 8- | JDK 9+
Soft no no Cleared on enqueue
Weak no no Cleared on enqueue

Q redhat

Weak References: Recap, Keep Alive

When referent is unreachable, should we make it reachable?

m Finalizable objects are required to be walked!

Type Keep Alive Comment

JDK8 \JDK 9+
Soft Cleared on enqueue
Weak Cleared on enqueue
Final YES YES « HEHABWCTb

Q redhat

Weak References: Recap, Keep Alive

When referent is unreachable, should we make it reachable?

m Finalizable objects are required to be walked!
m Phantom references may have to walk the object graph!

Type Keep Alive Comment
JDK 8- | JDK 9+
Soft no no Cleared on enqueue
Weak no no Cleared on enqueue
Final YES YES + HEHABUCTb
Phantom || yes no Cleared on enqueue since JDK 9

Q redhat

Weak References: Churn Test

O@Benchmark

public void churn(Blackhole bh) {
bh.consume (new Finalizable());
bh.consume (new byte[10000]) ;

}

jdk10/bin/java -XX:+UseShenandoahGC -Xlog:gctstats
Pause Final Mark (G) = 14.90 s (a = 338708 us)
Pause Final Mark (N) = 14.90 s (a = 338596 us)
Finish Queues = 8.36 s (a = 189976 us)
Weak References = 6.50 s (a = 147657 us)
Process 6.04 s (a = 137335 us)
Enqueue = 0.45 s (a = 10312 us)

O redhat

Weak References: Retain Test

OBenchmark
public Object test() {
if (rq.poll() !'= null) {
ref = new PhantomReference<>(createTreeMap(), rq);

}
return new byte[1000];

7dk8/bin/java -XX:+UseShenandoahGC -verbose:gc
Pause Final Mark (G) 0.44 s (a = 12133 us)

Pause Final Mark (N) = 0.39 s (a = 10777 us)
Finish Queues = 0.08 s (a = 2123 us)
Weak References = 0.29 s (a = 41841 us)

Process 0.29 s (a = 41757 us)
Enqueue = 0.00 s (a = 78 us)

Q redhat

Weak References: Latency Tips Q20

1. Avoid reference churn!

m Make sure referents normally stay reachable
m Do more explicit lifecycle mgmt if they get unreachable often
m Avoid finalizable objects! Use java.lang.ref.Cleaner!

Q redhat

Weak References: Latency Tips Q20

1. Avoid reference churn!

m Make sure referents normally stay reachable
m Do more explicit lifecycle mgmt if they get unreachable often
m Avoid finalizable objects! Use java.lang.ref.Cleaner!

2. Keep graphs reachable via special references minimal

m Depending on JDK, phantom references need care: use clear ()
m Or, make sure references die along with referents

Q redhat

Weak References: Latency Tips Q20

1. Avoid reference churn!

m Make sure referents normally stay reachable
m Do more explicit lifecycle mgmt if they get unreachable often
m Avoid finalizable objects! Use java.lang.ref.Cleaner!

2. Keep graphs reachable via special references minimal

m Depending on JDK, phantom references need care: use clear ()
m Or, make sure references die along with referents

3. Tune down the weakref processing frequency

m Look for GC-specific setup
(Shenandoah example: -XX: ShenandoahRefProcFrequency=#)

Q redhat

Class Unload

Class Unload: Pause Taxonomy

Init CM

Init CM

I Compact

Finish CM

Evacuate ‘ Update Refs I

__________ Finish CM ""*===--._____Init UR Finish UR
Sync VM Operation Cleanup
Roots | Weak Refs

O redhat

Class Unload: Pause Taxonomy

Init CM

Finish CM

Evacuate

Compact

‘ Update Refs I

lnitcM L Finish CM """===-o_ | Init UR
Sync VM Operation Cleanup
TTSP Roots | Weak Refs | Class U

Finish UR

O redhat

Class Unload: Why, When, How

«A class or interface may be unloaded if and only if its
defining class loader may be reclaimed by the GC»?

m Matters the most when classloaders come and go:
enterprisey apps and other twisted magic

m Class unloading is enabled by default in Hotspot
(-XX:+ClassUnloading)

m Current implementation requires stop-the-world

“https://docs.oracle.com/javase/specs/jls/se9/html/jls-12.html#jls- 1?‘ redhat

https://docs.oracle.com/javase/specs/jls/se9/html/jls-12.html#jls-12.7

Class Unload: Test

@Benchmark
public Class<?> load() throws Exception {
return Class.forName("java.util.HashMap",
true, new URLClassLoader (new URL[0]));

7dk10/bin/java -XX:+UseShenandoahGC -Xlog:gctstats

Pause Final Mark (G) = 0.66 s (a = 328942 us)
Pause Final Mark (N) = 0.66 s (a = 328860 us)
System Purge = 0.66 s (a = 328668 us)
Unload Classes = 0.09 s (a = 43444 us)
CLDG = 0.57 s (a = 284217 us)

O redhat

Class Unload: Latency Tips Q20

1. Do not expect class unload? — Disable the feature

B -XX:-ClassUnloading is the ultimate killswitch
= ..but may have ill performance effects when classes to go away

Q redhat

Class Unload: Latency Tips Q20

1. Do not expect class unload? — Disable the feature

B -XX:-ClassUnloading is the ultimate killswitch
= ..but may have ill performance effects when classes to go away

2. Expect rare class unload? — Tune down the frequency

m Look for GC-specific class unloading frequency setup
(Shenandoah example: -XX: ShenandoahUnloadClassesFreq=#)

Q redhat

AN

Class Unload: Latency Tips

1. Do not expect class unload? — Disable the feature

B -XX:-ClassUnloading is the ultimate killswitch
= ..but may have ill performance effects when classes to go away

2. Expect rare class unload? — Tune down the frequency

m Look for GC-specific class unloading frequency setup
(Shenandoah example: -XX: ShenandoahUnloadClassesFreq=#)

3. Wait for more runtime improvements

m Concurrent class unloading?
m Filtering shortcuts?
m Improved class metadata scans?

Q redhat

Safepoint Epilog

Safepoint Epilog: Pause Taxonomy

I Compact

Init CM Finish CM

Evacuate ‘ Update Refs I

lnitcM L Finish CM """===-o_ | Init UR Finish UR
Sync VM Operation Cleanup
TTSP Roots | Weak Refs | Class U

O redhat

Safepoint Epilog: Pause Taxonomy

I I Compact
Init CM Finish CM
I Evacuate ‘ Update Refs I
Init CM eeeer= " Finish CMU T e Init UR Finish UR
Sync VM Operation Cleanup
TTSP Roots | Weak Refs | Class U Deflation | NM Scan

O redhat

Safepoint Epilog: What, When, Why

There are actions that execute at each safepoint
(because why not, if we are at STWs)

7dk8/bin/java -XX:+TraceSafepointCleanupTime
[deflating idle monitors, 0.0013491 secs]
[updating inline caches, 0.0000395 secs]

[compilation policy safepoint handler, 0.0000004 secs]
[mark nmethods, 0.0005378 secs]

[gc log file rotation, 0.0002754 secs]?
[purging class loader data graph, 0.0000002 secs]

2Surprisingly, no such logging in default JDK @ rednat

Monitor Deflation: Why

Locking
... IS
Unlocking
s
Unlocked Biased Lightweight (thin) Heavyweight (fat)
001 Thread ID 101 &LockRcrd | 000 &ObjMon | 010

LockRecord ObjectMonitor

(somewhere on stack)

Missed me? Missed me? Missed me? Missed me?

Somebody needs to «deflate» the monitors... o
> redhat

Monitor Deflation: Deflation Test

static class SyncPair {
int x, y;
public synchronized void move() {
Xt++; y--;
}
}

java -XX:+TraceSafepointCleanup -Dcount=1’000’000
[deflating idle monitors, 0.0877930 secs]

92052 us)
3982 us)

0.09 s (a
0.00 s (a

Pause Init Mark (G)
Pause Init Mark (N)

O redhat

Monitor Deflation: Latency Tips?

1. Avoid heavily contended synchronized locks

® j.u.c.l.Lock: footprint overheads
m Atomic operations: performance and complexity overhead

3All these are for extreme cases, and need verification that nothing else gets affe&gedh(_jt

Monitor Deflation: Latency Tips?

1. Avoid heavily contended synchronized locks

® j.u.c.l.Lock: footprint overheads
m Atomic operations: performance and complexity overhead

2. Have more safepoints!

m Keeps monitor population low by eagerly cleaning them up
® -XX:GuaranteedSafepointInterval=# is your friend here

3All these are for extreme cases, and need verification that nothing else gets affe&gedh(_jt

Monitor Deflation: Latency Tips?

1. Avoid heavily contended synchronized locks

® j.u.c.l.Lock: footprint overheads
m Atomic operations: performance and complexity overhead

2. Have more safepoints!

m Keeps monitor population low by eagerly cleaning them up
® -XX:GuaranteedSafepointInterval=# is your friend here

3. Exploit runtime improvements
B -XX:+MonitorInUseLists, enabled by default since JDK 9
B -XX:MonitorUsedDeflationThreshold=#, incremental deflation
m In progress: concurrent monitor deflation

3All these are for extreme cases, and need verification that nothing else gets affe&gedh(_jt

NMethod Scanning: Why

9680
10437
9680
11385
10437
9680
10437
11385

JIT compilers generate lots of code,

some of that code is unused after a while:

2
3
2
4
3
2
3
4

O O O O O 0O 0 O
SR I VR YRR Y
6O 60600000
cooo0ooo0o0o0

.StandardContext:
.StandardContext: :
.StandardContext:
.StandardContext:
.StandardContext:
.StandardContext:
.StandardContext:
.StandardContext:

:unbind

unbind

:unbind
:unbind
:unbind
:unbind
:unbind
:unbind

made

made
made
made
made

not entrant

not entrant
zombie
zombie
not entrant

Need to clean up stale versions of the code

Q redhat

NMethod Scanning: Caveat

uhwnN =

To sweep the generated method,
we need to make sure nothing uses it

Decide the method needs sweep

Mark method «not entrant»: forbid new activations
Check no activations are present on stacks

Mark the nmethod «zombie»: ready for sweep
Sweep the method

Q redhat

NMethod Scanning: Caveat

uhwnN =

To sweep the generated method,
we need to make sure nothing uses it

Decide the method needs sweep

Mark method «not entrant»: forbid new activations
Check no activations are present on stacks

Mark the nmethod «zombie»: ready for sweep
Sweep the method

7dk8/bin/java -XX:+TraceSafepointCleanupTime
[mark nmethods, 0.0005378 secs]

Q redhat

VAl

NMethod Scanning: Latency Tips* !

5
Fa

1. Turn off method flushing
B -XX:-MethodFlushing is your friend here
m There are potential ill effects: code cache overfill (compilation
stops), code cache locality problems (performance problems)

4All these are for extreme cases, and need verification that nothing else gets affe&gedh(_jt

NMethod Scanning: Latency Tips*

1. Turn off method flushing

B -XX:-MethodFlushing is your friend here
m There are potential ill effects: code cache overfill (compilation
stops), code cache locality problems (performance problems)

2. Reconsider the control flow to avoid deep stacks
m Less stack frames to scan, gets easier on sweeper

4All these are for extreme cases, and need verification that nothing else gets affe&gedh(_jt

NMethod Scanning: Latency Tips* Q20

1. Turn off method flushing

B -XX:-MethodFlushing is your friend here
m There are potential ill effects: code cache overfill (compilation
stops), code cache locality problems (performance problems)

2. Reconsider the control flow to avoid deep stacks
m Less stack frames to scan, gets easier on sweeper

3. Exploit runtime improvements

m JDK 10+ provides piggybacking nmethod scans on GC safepoints
m (Currently only shenandoah/jdk10 supports it)

4All these are for extreme cases, and need verification that nothing else gets affe&gedh(_jt

Heap Management

Heap Management: Internals

Usual active footprint overhead: 3..15% of heap size

1. Java heap: forwarding pointer (8 bytes/object)

2. Native: 2 marking bitmaps (1/64 bits per heap bit)
3. Native: $N_CPU workers (~ 2 MB / GC thread)

4. Native: region data (=~ 1 KB per region)

Q redhat

Heap Management: Internals

Usual active footprint overhead: 3..15% of heap size

1. Java heap: forwarding pointer (8 bytes/object)

2. Native: 2 marking bitmaps (1/64 bits per heap bit)
3. Native: $N_CPU workers (~ 2 MB / GC thread)

4. Native: region data (=~ 1 KB per region)

Example: -XX:+UseShenandoahGC -Xmx100G means:
~ 90..95 GB accessible for Java objects,
~ 103 GB RSS for GC parts

Q redhat

Heap Management: Internals

Usual active footprint overhead: 3..15% of heap size

But all of that is totally dwarfed
.oy GC heap sizing policies

Example: -XX:+UseShenandoahGC -Xmx100G means:
~ 90..95 GB accessible for Java objects,
~ 103 GB RSS for GC parts

Q redhat

Heap Management: Microservice Example

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

800 F+ v ' T T T T T R R "
: Serial :
700 - Parage1l :
: Shenandoah 1 = |:
600 B Shenandoah 2 B

RSS, MB

Load Idle Full GC Idle

time, sec

Q redhat

Heap Management: Microservice Example

RSS, MB

800

700
600
500
400 :
300 :
200 :

100 :

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

time, sec

Parallel

G1
Shenandoah 1 = |:
Shenandoah 2 3

FullGC ldle

Q redhat

Heap Management: Microservice Example

RSS, MB

800

700
600
500
400 :
300 :
200 :

100 :

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

time, sec

Parallel ==

G1
Shenandoah 1 =
Shenandoah 2 ==

FullGC ldle

O redhat

Heap Management: Microservice Example

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100 :

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

Parallel

G1
Shenandoah 1
IShenandoah 2

time, sec

FullGC

O redhat

Heap Management: Microservice Example

RSS, MB

800 ¢« v

700 :
600 -
500 :
400 :

300 :

200 Py

100

0
First unc

20

ommit

time, sec

Full GC

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

Parallel

G1
Shenandoah 1
Shenandoah 2

Q redhat

Heap Management: Microservice Example

RSS, MB

800
700
600

500 :
400 :
300 -
200 :

100

0

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

time, sec

Full GC

Parallel
G

Shenandoah 1
IShenandoah 2

O redhat

Heap Management: Microservice Example

RSS, MB

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

800 ¢« v D

700 :

600 :
500 :

400 :

Parallel

G1
Shenandoah 1
IShenandoah 2

300 W
200 :Pppn]

100

) 0 o/;o
Second uncomm|t time, sec

Full GC

Q redhat

Heap Management: Microservice Example

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

800 F+ v T T T T R ar e mr e T R R "

: Serial =— |:

700 : Parage;l —|:

: Shenandoah 1 == |:

600 : |Shenandoah2 —

o 900
= :
o 400 -

300 - M -

200 R -

100 :

Idle Full GC Idle :

[0 T [PO S B S P SHAT S S S S 3

60 80 100 120

time, sec

O redhat

Heap Management: Shenandoah's M.O.

«We shall take all the memory when we need it,
but we shall also give it back when we don’t»

Start with -Xms committed memory

Expand aggressively under load up to -Xmx

Stay close to -Xmx under load

Uncommit the heap and bitmaps down to zero when idle
Do periodic GCs to knock out floating garbage when idle

uhwh =

Tunables: -Xms, -Xmx, periodic GC interval, uncommit delay
Qredhat

Heap Management: Footprint Tips

1. Use GCs that can predictably size the heap
m All current Open)DK GCs have adaptive sizing
m Most of them give back memory reluctantly

Q redhat

Heap Management: Footprint Tips

1. Use GCs that can predictably size the heap

m All current Open)DK GCs have adaptive sizing
m Most of them give back memory reluctantly

2. Tune GC for lower footprint
m Smaller heaps, lower GC thread counts
m Uncommit tuning, periodic GC. Shenandoah examples:
-XX:ShenandoahGuaranteedGCInterval=(ms)
-XX:ShenandoahUncommitDelay=(ms)

Q redhat

Heap Management: Footprint Tips g

1. Use GCs that can predictably size the heap

m All current Open)DK GCs have adaptive sizing
m Most of them give back memory reluctantly

2. Tune GC for lower footprint

m Smaller heaps, lower GC thread counts

m Uncommit tuning, periodic GC. Shenandoah examples:
-XX:ShenandoahGuaranteedGCInterval=(ms)
-XX:ShenandoahUncommitDelay=(ms)

3. Exploit GC and infra improvements

m Java Agents that bash GC with Full GCs on idle?
m Modern GCs that recycle memory better?

Q redhat

Conclusion

Conclusion: In One Paragraph

Pre-requisite: get a decent concurrent GC.

O redhat

Conclusion: In One Paragraph

Pre-requisite: get a decent concurrent GC. After that:

1. Open)DKis able to provide ultra-low (< 1 ms) pauses in
non-extreme cases, and low pauses (< 100 ms) in
extreme cases

Q redhat

Conclusion: In One Paragraph

Pre-requisite: get a decent concurrent GC. After that:

1. Open)DKis able to provide ultra-low (< 1 ms) pauses in
non-extreme cases, and low pauses (< 100 ms) in
extreme cases

2. Open)DK is able to provide ultra-low pauses in extreme
cases with some runtime improvements. Some of them
are already available, upgrade!

Q redhat

Conclusion: In One Paragraph

Pre-requisite: get a decent concurrent GC. After that:

1. Open)DKis able to provide ultra-low (< 1 ms) pauses in
non-extreme cases, and low pauses (< 100 ms) in
extreme cases

2. Open)DK is able to provide ultra-low pauses in extreme
cases with some runtime improvements. Some of them
are already available, upgrade!

3. One can avoid extreme case pitfalls with careful and/or
specialized code, until runtimes catch up

Q redhat

Conclusion: Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Development in separate JDK 10 forest, regular backports
to separate JDK 9 and 8u forests

m JDK 8u backport ships in RHEL 7.4+, Fedora 24+, and
derivatives (CentOS, Oracle Linux®, Amazon Linux, etc)

m Nightly development builds (tarballs, Docker images)

>One can find that quite amusing
Q redhat

https://wiki.openjdk.java.net/display/shenandoah/

Backup

Backup: Microservice Example

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

800 F+ v T T T T R ar e mr e T R R "

: Serial =— |:

700 : Parage;l —|:

: Shenandoah 1 == |:

600 : lShenandoahz —

o 900
= :
o 400 -

300 - M -

200 R -

100 :

Idle Full GC Idle :

[0 T [PO S B S P SHAT S S S S 3

60 80 100 120

time, sec

O redhat

Backup: Microservice Example

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

800 rvrprr g g g gy g g A

: Serial =— |:

. Parallel == | -

700 : G1 1
Shenandoah 1 =

600 ' Shenandoah 2
500 -

400 :

Java user CPU, %

300 :
200 :

100

120

time, sec

O redhat

Backup: Microservice Example

Network, MB/s

wildfly-warm-rest-http, wrk http

test, JDK 10 x86-64, -Xnj

x512m

Rarallel
G

Shenanfioah 1

120

200 -
. Shenanfloah 2
100 - -
:Star Idle Load Idle Full GC Idle
; ARREERARARE \
0 20 40 60 80 100

time, sec

O redhat

Code Roots: Why

static final MyIntHolder constant = new MyIntHolder();

@Benchmark
public int test() {
return constant.x;

Inlining reference constants into generated code
is natural for throughput performance:

movabs $0x7111b5108,%r10 # Constant oop
mov 0xc (%r10) ,%edx # getfield «

callg 0x00007£73735dff80 # Blackhole.consume(int)

Q redhat

Code Roots: Fixups

movabs $0x7111b5108,%r10 # Constant oop
mov 0xc (%r10) ,%edx # getfield z

callqg 0x00007£73735dff80 # Blackhole.consume(int)

m Inlined references require code patching: only safe to do
when nothing executes the code block = pragmatically,
under STW

Q redhat

Code Roots: Fixups

movabs $0x7111b5108,%r10 # Constant oop
mov 0xc (%r10) ,%edx # getfield z

callqg 0x00007£73735dff80 # Blackhole.consume(int)

m Inlined references require code patching: only safe to do
when nothing executes the code block = pragmatically,
under STW

m Also need to pre-evacuate the code roots before anyone
sees old object reference!

Q redhat

Code Roots: Pre-Evacuation

Need to pre-evacuate code roots before unparking from STW:

(? # jdk10/bin/java -XX:+UseShenandoahGC -Xlog:gctstats
Pause Final Mark (G) 0.13 s (a 2768 us)

Pause Final Mark (N) = 0.10 s (a = 2623 us)
Initial Evacuation = 0.08 s (a = 2515 us)
E: Code Cache Roots = 0.04 s (a = 1227 us)

Alternative: barriers after constants, with throughput hit

O redhat

Code Roots: Latency Tips

1. Have less compiled code around

m Disable tiered compilation
m More aggressive code cache sweeping

Q redhat

Code Roots: Latency Tips Q20

1. Have less compiled code around

m Disable tiered compilation
m More aggressive code cache sweeping

2. Tell runtime to treat code roots for latency

B -XX:ScavengeRootsInCode=0 to remove compiler oops
m GC-specific tuning enabling concurrent code cache evacuation

Q redhat

Code Roots: Latency Tips Q20

1. Have less compiled code around

m Disable tiered compilation
m More aggressive code cache sweeping

2. Tell runtime to treat code roots for latency

B -XX:ScavengeRootsInCode=0 to remove compiler oops
m GC-specific tuning enabling concurrent code cache evacuation

3. Exploit runtime improvements
m Special code cache roots recording (G1, JDK 9+)

Q redhat

Cleanups

Cleanups: Problem

With 1 ms pause time budget,
processing 10K regions means 100 ns per region

m Hit a contended location = out of budget
m Want to clean aux data structures?

m Want to clean up dirty regions?

m Want to uncommit the empty regions?

Q redhat

Cleanups: Cleanups

Solution: asynchronous cleanups

GC(193) Pause Init Partial 1.913ms
GC(193) Concurrent partial 27062M->27082M(51200M) 0.108ms
GC(193) Pause Final Partial 0.570ms
GC(193) Concurrent cleanup 27086M->17092M(51200M) 15.241ms

Works well, but a perception problem:
What is GC time here?

Q redhat

	Overall
	Safepoint Prolog
	TTSP

	GC Roots
	Thread Roots
	Sync Roots
	Class Roots
	String Table Roots

	Weak References
	Class Unload
	Safepoint Epilog
	Monitor Deflation
	NMethod Scanning

	Heap Management
	Conclusion
	Backup
	Code Roots

	Cleanups

