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Intro
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Intro: Disclaimers

All tests are done:
� ...by trained professionals: recheck1 the results before using them
� ...on 1x2x4 i7-4790K (4.0 GHz, HSW): that machine is fast
� ...running Linux x86_64, 3.13: latest stable Linux Kernel
� ...with a 8u40 EA x86_64: the latest and greatest JDK
� ...driven by JMH2: the latest and greatest benchmarking harness

1https://github.com/shipilev/article-string-catechism/
2http://openjdk.java.net/projects/code-tools/jmh/
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Intro: Strings are abundant

� Humans communicate with text
� Machines follow suit and communicate with text as well: most source code
is text, many data interchange formats are text

� Anecdotal data from JEP 192: 25% of heap occupied by String objects
� Anecdotal data: String optimizations usually bring the immediate payoff

Understanding and avoiding cardinal sins is the road to awe.

Slide 7/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Internals
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Internals: java.lang.String inside

public final class String implements ... {

private final char[] value;

private int hash;

...

Strings are immutable:
� Can use/pass them without synchronization, and nothing breaks
� Can share the underlying char[] array, covertly from user
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Internals: java.lang.String internals

Quite a bit of space overhead:

java.lang.String object internals:

OFFSET SIZE TYPE DESCRIPTION

0 12 (object header)

12 4 char[] String.value

16 4 int String.hash

20 4 (alignment loss)

Instance size: 24 bytes

� 8..16 bytes: String header
� 4..4 bytes: String hashcode
� 12..16 bytes: char[] header
� 0..8 bytes: alignment losses

12..24 bytes against char[], 24..44 bytes against wchar_t*
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Internals: Catechism

Q: Should I use Strings to begin with?
A: Absolutely, when you are dealing with text data.

Q: What if memory footprint is a concern?
A: There are remedies for that, read on.

Q: I can wind up my own String implementation over char[]!
A: Sure you can, read on for caveats.

Q: Should I wind up my own String implementation?
A: (Silence was the answer, and Engineer left enlightened)
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Immutable
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Immutable: Strings are special
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Immutable: Stuck In A Loop

@Benchmark

public String string () {

String s = "Foo";

for (int c = 0; c < 1000; c++) {

s += "Bar";

}

return s;

}
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Immutable: Stuck In A Loop

@Benchmark

public String string () {

String s = "Foo";

for (int c = 0; c < 1000; c++) {

s += "Bar"; // newly created String here

}

return s;

}
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Immutable: Stuck In A Loop

@Benchmark

public String stringBuilder () {

StringBuilder sb = new StringBuilder ();

for (int c = 0; c < 1000; c++) {

sb.append("Bar");

}

return sb.toString ();

}
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Immutable: Stuck In A Loop

How bad could it be, anyway?

Benchmark Throughput, ops/s

string 3250 ± 18

stringBuffer 125270 ± 1005

stringBuilder 116173 ± 423

Lots of pain: here, 30x performance penalty for adding a thousand of Strings.
Compilers are only able to help so much (more later).

My JVM hovercraft is full of GC eels.
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Immutable: Catechism

Q: Why this is so painful?
A: Immutability almost always comes at a cost.

Q: But I like immutability, how to ease the pain?
A: Use Builders to construct immutable objects.

Q: Why can’t JDK/JVM optimize this for us?
A: It can, in many cases. But, there is no escape if you want the best possible
performance for all possible cases. (No Free Lunch)

Q: Do I need the best possible performance?
A: (Silence was the answer, and Engineer left enlightened)
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Concat
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Concat: Decompiling

@Benchmark

public String string_2 () {

return s1 + s2;

}

...compiles into:

public String string_2 ();

Code:

0: new #14 // java.lang.StringBuilder

3: dup

4: invokespecial #15 // StringBuilder.new()

7: aload_0

8: getfield #3 // s1:String;

11: invokevirtual #16 // StringBuilder.append(String );

14: aload_0

15: getfield #5 // s2:String;

18: invokevirtual #16 // StringBuilder.append(String );

21: invokevirtual #17 // StringBuilder.toString ();

24: areturn
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SB: Decompiling

Not suprisingly,
StringBuilder.append chains are routinely optimized:

@Benchmark

public String sb_6() {

return new StringBuilder ()

.append(s1). append(s2). append(s3)

.append(s4). append(s5). append(s6)

.toString ();

}

@Benchmark

public String string_6 () {

return s1 + s2 + s3 + s4 + s5 + s6;

}

Try this with -XX:±OptimizeStringConcat to quantify...
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SB: StringBuilder opts are good!

Benchmark N Score, ns/op Impr

-Opt +Opt

stringBuilder 1 14.0 ± 0.1 8.7 ± 0.1 +61%

stringBuilder 2 20.3 ± 0.2 12.1 ± 0.4 +68%

stringBuilder 3 27.0 ± 0.2 14.8 ± 0.1 +82%

stringBuilder 4 33.3 ± 0.5 21.1 ± 0.1 +58%

stringBuilder 5 38.6 ± 0.2 25.4 ± 0.1 +50%

stringBuilder 6 69.6 ± 1.0 29.9 ± 0.2 +133%

string 1 2.3 ± 0.1 2.3 ± 0.1 0%

string 2 20.4 ± 0.2 11.8 ± 0.1 +73%

string 3 27.1 ± 0.3 14.9 ± 0.1 +82%

string 4 33.0 ± 0.4 21.1 ± 0.1 +56%

string 5 38.0 ± 0.3 25.3 ± 0.1 +50%

string 6 70.1 ± 0.7 29.9 ± 0.3 +135%
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SB: Implicit SB vs. Explicit Conversion

Because of that, people are surprised how this benchmark behaves:

private int x;

@Setup

void setup () { x = 1709; }

@Benchmark

String concat_Pre () { return "" + x; }

@Benchmark

String concat_Post () { return x + ""; }

@Benchmark

String integerToString () { return Integer.toString(x); }

@Benchmark

String stringValueOf () { return String.valueOf(x); }
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SB: Implicit SB vs. Explicit Conversion (cont.)

Benchmark Score, ns/op

concat_Post 14.9 ± 0.1

concat_Pre 15.0 ± 0.1

integerToString 21.8 ± 0.1

stringValueOf 21.9 ± 0.3

Implicit concatenation is faster than explicit conversions?

� StringBuilder optimizations kick in, and append(int) is actually faster!
� And will be slower with -XX:-OptimizeStringConcat
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SB: Side Effects

Let’s make it a little bit more complicated...

private int x;

@Setup

void setup () { x = 1709; }

@Benchmark

String concat_just () { return "" + x; }

@Benchmark

String concat_side () { x--; return "" + (x++); }

@Benchmark

String integerToString_just () { return Integer.toString(x); }

@Benchmark

String integerToString_side () { x--; return Integer.toString(x++); }
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SB: Side Effects (cont.)

Benchmark Score, ns/op

concat_just 14.8 ± 0.1

integerToString_just 21.6 ± 0.1

stringValueOf_just 21.6 ± 0.1

concat_side 27.2 ± 0.3

integerToString_side 21.6 ± 0.1

stringValueOf_side 21.6 ± 0.2

� Once we have a side-effect in append() call, optimization bails out3

� On deopt, need to «unwind» the execution, but unable to do so for stores
� Moving the memory stores out of append() args helps

3https://bugs.openjdk.java.net/browse/JDK-8043677
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Lazy Logging: Trouble

private int x;

private boolean enabled;

void log(String msg) {

if (enabled) {

System.out.println(msg);

}

}

@Benchmark

void heap_string () {

log("Wow ,␣x␣is␣such␣" + x + "!");

}

@Benchmark

void heap_string_guarded () {

if (enabled) {

log("Wow ,␣x␣is␣such␣" + x + "!");

}

}

� Concatenation happens before the
enabled check

� Wasting precious time
constructing the strings we don’t
care about

� Therefore, most people opt to
guard the logger calls before even
touching the strings
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Lazy Logging: Trouble

private int x;

private boolean enabled;

@Benchmark

void heap_lambda () {

log (() -> "Wow ,␣such␣" + x + "!");

}

@Benchmark

void noArg_lambda () {

log (() -> "Such␣message ,␣wow.");

}

@Benchmark

public void local_lambda () {

int lx = x;

log (() -> "Wow ,␣such␣" + lx + "!");

}

� We can do much better with
lambdas: deferred execution
without a syntactic mess

� There is a bit of the underlying
difference when referencing locals,
fields, or nothing
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Lazy Logging: Lazy Logging

Method Time, ns/op

heap local noArgs

string 19.3 ± 0.4 17.7 ± 0.2 0.4 ± 0.1

lambda 1.8 ± 0.1 1.8 ± 0.1 0.4 ± 0.1

string_guarded 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1

Lambdas rock! The explicit guard still wins, but not by a large margin:
capturing lambdas (yet) need instantiation.
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Concat: Catechism

Q: Should I be worried about concatenation costs?
A: You should in all non-trivial cases. You can’t help much in trivial cases.

Q: What concatenation cases are non-trivial?
A: Any pattern involving control flow, side effects, unpredictable values.

Q: Are StringBuilder-s flawless?
A: They are aggressively optimized, but sometimes even those optos fail.

Q: I am PL professional, give me lazy-val, call-by-name, and shut up.
A: (points to JDK 8 release, and PL professional leaves enlightened)
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Hash Codes
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Zeroes: P(31) hashcode

Spec says String.hashCode is a P(31) polynomial hashcode:

ℎ(𝑠) =
𝑛−1∑︀
𝑘=0

31𝑛−𝑘−1𝑠𝑘

public int hashCode () {

...

int h = 0;

for (char v : value) {

h = 31 * h + v;

}

hash = h;

}

Time complexity is Ω(𝑁) and 𝑂(𝑁).
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Zeroes: Trying...

String str1 , str2;

@Setup

public void setup() {

str1 = "лжеотождествление␣электровиолончели"; // same length

str2 = "электровиолончели␣лжеотождествление"; // same length

}

@Benchmark

int test1 () { return str1.hashCode (); }

@Benchmark

int test2 () { return str2.hashCode (); }
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Zeroes: Trying...

String str1 , str2;

@Setup

public void setup() {

str1 = "лжеотождествление␣электровиолончели"; // same length

str2 = "электровиолончели␣лжеотождествление"; // same length

}

@Benchmark

int test1 () { return str1.hashCode (); } // 22.6 ± 0.1 ns/op

@Benchmark

int test2 () { return str2.hashCode (); } // 0.7 ± 0.1 ns/op
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Zeroes: Actual Implementation

public int hashCode () {

int h = hash;

if (h == 0) {

for (char v : value) {

h = 31 * h + v;

}

hash = h;

}

return h;

}

� Actual code caches hashcodes
� Immense improvements in most
scenarios, justifying 4 bytes per
instance

� By pigeonhole principle, some
Strings are bound to have
ℎ𝑠(𝑠) = 0, sucks to be them

� It is a sane engineering tradeoff to
have a performance anomaly with
2−32 probability
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Collisions: Walking on a Sunshine

// carefully populated with unicorn dust:

HashMap <String , String > sunshine;

@Benchmark void keySet(Blackhole bh) {

for (String key : sunshine.keySet ()) {

bh.consume(sunshine.get(key));

}

}

@Benchmark void entrySet(Blackhole bh) {

for (Map.Entry <String , String > e : sunshine.entrySet ()) {

bh.consume(e);

}

}
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Collisions: Using JDK 7u0...

Benchmark Size Time, ns/op ns/key

entrySet 1 14.1 ± 0.1 14.1

entrySet 10 47.4 ± 0.2 4.7

entrySet 100 294.1 ± 0.9 2.9

entrySet 1000 5366.9 ± 802.8 5.4

entrySet 10000 67394.4 ± 456.5 6.7

keySet 1 18.4 ± 0.5 18.4

keySet 10 279.8 ± 6.7 27.8

keySet 100 22266.6 ± 179.6 222.7

keySet 1000 2716486.4 ± 10145.7 2716.5

keySet 10000 355309390.2 ± 1214802.8 355309.4

keySet performance rapidly deteriorates: 𝑂(𝑁2)
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Collisions: Algorithmic Attacks

Polynomial hash functions make artificial collisions a piece of cake.
Suppose this expansion:

ℎ(𝑠) =
𝑛−1∑︀
𝑘=0

31𝑛−𝑘−1𝑠𝑘 = [
𝑛−3∑︀
𝑘=0

31𝑛−𝑘−1𝑠𝑘] + 31𝑠𝑛−2 + 𝑠𝑛−1

Then, if strings 𝑎 and 𝑏 have common prefix in [0..𝑛− 3]:

ℎ(𝑎) = ℎ(𝑏) ⇔ 31(𝑎𝑛−2 − 𝑏𝑛−2) = (𝑎𝑛−1 − 𝑏𝑛−1)

...and that is super-easy, suppose 𝑎 = ”...𝐴𝑎” and 𝑏 = ”...𝐵𝐵”.
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Collisions: Why should I care?

� Alice is running her battle-hardened HTTP server, patched up for
Heartbleed, Shellshock, all these fancy-named vulnerabilities.
Alice is serious about security.

� Mallory giggles and sends the HTTP Request with these HTTP Headers:

"X-Conference -AaAaAaAa:␣JokerConf␣2014,␣Why␣So␣Serious?"

"X-Conference -AaAaAaBB:␣JokerConf␣2014,␣Why␣So␣Serious?"

"X-Conference -AaAaBBAa:␣JokerConf␣2014,␣Why␣So␣Serious?"

"X-Conference -AaAaBBBB:␣JokerConf␣2014,␣Why␣So␣Serious?"

� Alices’s web server accepts the request, stores HTTP Headers in
Map<String, String>, and then tries to process them. Boom, resource
exhaustion and possible DoS.
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Collisions: Using JDK 8

Benchmark Size Time, ns/op ns/key

entrySet 1 11.6 ± 0.1 11.7

entrySet 10 36.3 ± 0.1 3.6

entrySet 100 278.1 ± 0.7 2.8

entrySet 1000 3606.7 ± 21.4 3.6

entrySet 10000 86459.5 ± 626.4 8.6

keySet 1 15.1 ± 0.1 15.0

keySet 10 253.2 ± 0.6 2.5

keySet 100 10072.5 ± 144.4 100.7

keySet 1000 158591.7 ± 1202.4 158.6

keySet 10000 2355039.3 ± 12087.3 235.3

keySet is now 𝑂(𝑁𝑙𝑜𝑔𝑁) – not as bad
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Collisions: Another quirks

http://www.zlib.net/crc_v3.txt

In particular, any CRC algorithm that initializes its register to zero will
have a blind spot of zero when it starts up and will be unable to
"count"a leading run of zero bytes. As a leading run of zero bytes is
quite common in real messages, it is wise to initialize the algorithm
register to a non-zero value.

The same applies to String.hashCode.
Thank God, NUL-prefixed Strings are not common.
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Hash Codes: Catechism

Q: Should I care about String.hashCode?
A: Most likely not, unless you expose your naked Maps for user input.

Q: Should I wrap the Strings with my own hashCode implementation?
A: In some very rare cases, yes.

Q: Why we wouldn’t change the String.hashCode computation?
A: The P(31) hashcode is spec-ed in so many places, it can’t be changed now.

Q: That hashCode caching thing at zero bothers me, can be do a boolean flag?
A: That will explode String footprint by 8 bytes in worst case.
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Substring
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Substring: JDK 8

java.lang.String object internals:

OFFSET SIZE TYPE DESCRIPTION

0 12 (object header)

12 4 char[] String.value

16 4 int String.hash

20 4 (alignment loss)

Instance size: 24 bytes

Seasoned Java devs can wonder...

where are offset and count fields?
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Substring: JDK 8

java.lang.String object internals:

OFFSET SIZE TYPE DESCRIPTION

0 12 (object header)

12 4 char[] String.value

16 4 int String.hash

20 4 (alignment loss)

Instance size: 24 bytes

Seasoned Java devs can wonder... where are offset and count fields?
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Substring: JDK < 7u6

java.lang.String object internals:

OFFSET SIZE TYPE DESCRIPTION

0 12 (object header)

12 4 char[] String.value

16 4 int String.offset

20 4 int String.count

24 4 int String.hash

28 4 (alignment loss)

Instance size: 32 bytes

Here they are! Left behind the enemy lines in JDK < 7u6.
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Substring: Benchmark

@Param ({"0", "30", "60", "90", "120"})

int limit;

String str;

@Setup

public void setup() {

str = "JokerConf␣2014:␣Why␣So␣Serious?␣" +

"JokerConf␣2014:␣Why␣So␣Serious?␣" +

"JokerConf␣2014:␣Why␣So␣Serious?␣" +

"JokerConf␣2014:␣Why␣So␣Serious?␣";

}

@Benchmark

String head() { return str.substring(limit); }

@Benchmark

String tail() { return str.substring(0, limit); }
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Substring: JDK < 7u6: Sharing

Limit Time, ns/op

head tail

0 2.2 ± 0.1 3.7 ± 1.1

30 3.5 ± 0.2 3.6 ± 0.9

60 3.5 ± 0.2 3.4 ± 0.2

90 3.7 ± 0.4 3.4 ± 0.1

120 3.7 ± 1.0 3.4 ± 0.1

� substring() only instantiates Strings, shares char[] arrays
� This is believed to cause memory leaks: think large XML and substring on it
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Substring: JDK 8: Copying

Limit Time, ns/op

head tail

0 2.2 ± 0.1 19.4 ± 0.3

30 22.9 ± 0.1 10.1 ± 0.0

60 16.8 ± 0.1 15.2 ± 0.1

90 12.7 ± 0.1 21.7 ± 0.5

120 11.1 ± 0.3 26.6 ± 0.1

� substring() now copies the entire char[] array
� Works reasonably well for small substrings, avoids memory leaks
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Substring: Catechism

Q: New substring sounds bad, can I get it back?
A: No, you can’t.

Q: But why?
A: Real memory leaks are worse than potential performance issues.

Q: What if I need 𝑂(1) substring?
A: That means you care about this enough to make your own storage.

Q: But my application was using substring for performance reasons!
A: (Points to a String.substring Javadoc, and Engineer leaves enlightened)
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Intern
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Intern: Interning vs. Deduplication

Deduplication:
Reduce # of instances in each equivalence class

Interning (canonicalization):
Reduce # of instances in each equivalence class to one (canonical) instance.

� As usual, enforcing stronger property costs more
� In many cases, you want deduplication, not interning
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Intern: User Interners

Interning is dead-simple, and can be done by hand:

public class CHMInterner <T> {

private final Map <T, T> map;

public CHMInterner () {

map = new ConcurrentHashMap <>();

}

public T intern(T t) {

T exist = map.putIfAbsent(t, t);

return (exist == null) ? t : exist;

}

}
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Intern: User Interners (cont.)

strings Time, us/op

chm hm intern

100 2.4 ± 0.1 0.9 ± 0.1 8.0 ± 0.3

10000 242.9 ± 0.944 133.8 ± 0.8 891.8 ± 13.6

1000000 47537.0 ± 2123.8 35349.2 ± 1188.8 315664.8 ± 17821.4

(Throw-away) (Concurrent)HashMap is order of magnitude better!
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Intern: And the reason is:

String.intern() is a gateway to VM internal StringTable.
StringTable is fixed-size, and almost always overloaded:

-XX:+ PrintStringTableStatistics

StringTable statistics:

Number of buckets : 60013 = 480104 bytes , avg 8.000

Number of entries : 1002451 = 24058824 bytes , avg 24.000

Number of literals : 1002451 = 64168512 bytes , avg 64.012

Total footprint : = 88707440 bytes

Average bucket size : 16.704

Variance of bucket size : 9.731

Std. dev. of bucket size: 3.119

Maximum bucket size : 27

User-issued String.intern() calls only make it worse!
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Intern: User Deduplicators

Relaxing the canonicalization requirement may bring the performance:

public class CHMDeduplicator <T> {

private final int prob;

private final Map <T, T> map;

public CHMDeduplicator(double prob) {

this.prob = (int) (Integer.MIN_VALUE + prob * (1L << 32));

this.map = new ConcurrentHashMap <>();

}

public T dedup(T t) {

if (ThreadLocalRandom.current (). nextInt () > prob) {

return t;

}

T exist = map.putIfAbsent(t, t);

return (exist == null) ? t : exist;

}

}
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Intern: Probabilistic Deduplicators

time, us/op

Prob chm hm intern

0.0 3.2 ± 0.1 3.3 ± 0.1 3.3 ± 0.1

0.1 6.9 ± 0.1 7.3 ± 0.7 13.1 ± 0.1

0.2 10.4 ± 0.4 9.7 ± 0.7 22.4 ± 0.1

0.3 13.4 ± 0.2 12.1 ± 0.2 31.9 ± 0.3

0.4 16.4 ± 0.1 14.2 ± 0.1 40.3 ± 0.3

0.5 19.1 ± 0.1 15.9 ± 0.1 49.3 ± 0.8

0.6 21.7 ± 1.1 16.7 ± 0.2 56.6 ± 0.6

0.7 22.4 ± 0.2 16.0 ± 0.1 63.3 ± 1.1

0.8 23.7 ± 0.5 15.4 ± 0.1 70.7 ± 2.5

0.9 25.7 ± 0.9 14.0 ± 0.1 76.4 ± 0.7

1.0 26.1 ± 0.1 11.5 ± 0.1 118.5 ± 30.1
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Intern: GC Deduplication

Why can’t JVM do this for us?

-XX:+UseG1GC -XX:+UseStringDeduplication
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Intern: GC Deduplication

public static void main(String ... args) {

List <String > strs = ...;

String last = GraphLayout.parseInstance(strs). toFootprint ();

System.out.println("***␣Original:␣" + last);

for (int gc = 0; gc < 100; gc++) {

String cur = GraphLayout.parseInstance(strs). toFootprint ();

if (!cur.equals(last)) {

System.out.println("***␣GC␣changed:␣" + cur);

last = cur;

}

System.gc();

}

}

Use JOL4 to estimate the memory footprint.

4http://openjdk.java.net/projects/code-tools/jol/
Slide 56/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://openjdk.java.net/projects/code-tools/jol/


Intern: GC Deduplication

*** Original:

java.util.ArrayList instance footprint:

COUNT AVG SUM DESCRIPTION

10000 47 472000 [C

1 56232 56232 [Ljava.lang.Object;

10000 24 240000 java.lang.String

1 24 24 java.util.ArrayList

20002 768256 (total)

*** GC changed:

java.util.ArrayList instance footprint:

COUNT AVG SUM DESCRIPTION

100 47 4720 [C

1 56232 56232 [Ljava.lang.Object;

10000 24 240000 java.lang.String

1 24 24 java.util.ArrayList

10102 300976 (total)

Notice the char[] arrays are de-duplicated.
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Intern: GC Deduplication

*** GC changed:

java.util.ArrayList instance footprint:

COUNT AVG SUM DESCRIPTION

100 47 4720 [C

1 56232 56232 [Ljava.lang.Object;

10000 24 240000 java.lang.String

1 24 24 java.util.ArrayList

10102 300976 (total)

*** Dedup:

java.util.ArrayList instance footprint:

COUNT AVG SUM DESCRIPTION

100 47 4720 [C

1 56232 56232 [Ljava.lang.Object;

100 24 2400 java.lang.String

1 24 24 java.util.ArrayList

202 63376 (total)

Hand-rolled deduplicator can also reduce the number of String-s.
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Intern: Catechism

Q: But I read so much on using String.intern for improving footprint.
A: http://en.wikipedia.org/wiki/Hanlon’s_razor

Q: I will use String.intern just on this tiny little location.
A: Excellent, you already know where your bottlenecks are going to be.

Q: Why wouldn’t we optimize String.intern?
A: We are improving it. It does not help the misuse of String.intern.

Q: Should I rely on GC deduplication for ultimate memory savings?
A: Identity rules disallow us to merge objects, you have to merge them yourself.

Slide 59/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://en.wikipedia.org/wiki/Hanlon's_razor


Equals
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Equals: Testing basic things

String bar10_0 = "BarBarBarA", bar10_1 = "BarBarBarA";

String bar10_2 = "BarBarBarB", bar10_3 = "ABarBarBar";

String bar11 = "BarBarBarAB";

@Benchmark

boolean sameChar () { return bar10_0.equals(bar10_1 ); }

@Benchmark

boolean sameLen_diffEnd () { return bar10_0.equals(bar10_2 ); }

@Benchmark

boolean sameLen_diffStart () { return bar10_0.equals(bar10_3 ); }

@Benchmark

boolean differentLen () { return bar10_0.equals(bar11 ); }
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Equals: Basic characteristics

Benchmark Score, ns/op

sameChar 1.0 ± 0.1

differentLen 1.3 ± 0.1

sameLen_diffEnd 4.6 ± 0.1

sameLen_diffStart 2.6 ± 0.1

� Strings instantiated off the same constant are interned, == check is fast
� Strings of different lengths are not compared at all
� Strings are matched from start to end
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Equals: Implementation
public boolean equals(Object anObject) {

if (this == anObject) {

return true;

}

if (anObject instanceof String) {

String anotherString = (String)anObject;

int n = value.length;

if (n == anotherString.value.length) {

char v1[] = value;

char v2[] = anotherString.value;

int i = 0;

while (n-- != 0) {

if (v1[i] != v2[i])

return false;

i++;

}

return true;

}

}

return false;

}

«I think this version is well-
optimized, and you can gain
nothing here...»
(somebody on StackOverflow)
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Equals: Intrinsics

Benchmark Score, ns/op

default disabled5

sameChar 1.0 ± 0.1 1.1 ± 0.1

differentLen 1.3 ± 0.1 1.3 ± 0.1

sameLen_diffEnd 4.6 ± 0.1 9.7 ± 0.1

sameLen_diffStart 2.6 ± 0.1 3.0 ± 0.1

� The actual equals() implementation is intrinsified
� Blindly rewriting the Java implementation will not be faster
� How can intrinsified implementation be 2x faster than «optimal» Java code?

5-XX:+UnlockDiagnosticVMOptions -XX:DisableIntrinsic=::_equals
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Equals: Intrinsics (cont.)

Intrinsic version is vectorized:

5.23% 3.42% 0x00007f1b8c93de95: mov (%rdi ,%rcx ,1),%ebx

14.73% 4.01% 0x00007f1b8c93de98: cmp (%rsi ,%rcx ,1),%ebx

0x00007f1b8c93de9b: jne 0x00007f1b8c93debb

26.39% 27.41% 0x00007f1b8c93de9d: add $0x4 ,%rcx

0x00007f1b8c93dea1: jne 0x00007f1b8c93de95

� Notice comparing in 4-byte strides
� This works regardless of whether compiler can or can’t auto-vectorize
� VM will select SSE, AVX, etc to efficiently compare.
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Equals: Catechism

Q: I have this very nifty idea of optimizing String.equals...
A: If you are not prepared to deal with low-level assembly, do not even start.

Q: Why would you need a Java version for String.equals then?
A: Interpreter, C1, and other compilers still use this as the fallback code.

Q: Should I intern the Strings and then == on them instead?
A: It would be easier to just check the hashCode before.

Q: But interning is so much easier!
A: (silence is the answer, and Programmer leaves enlightened)
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Regexps
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Regexps: splitting

String text = "Глокая␣куздра␣штеко␣будланула␣бокра␣и␣курдячит␣бокрёнка.";

String textDup = text.replaceAll("␣", "␣␣");

Pattern pattern = Pattern.compile("␣␣");

@Benchmark

String [] charSplit () { return text.split("␣"); }

@Benchmark

String [] strSplit () { return textDup.split("␣␣"); }

@Benchmark

String [] strSplit_pattern () { return pattern.split(textDup ); }
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Regexps: Splitting

Benchmark Time, ns/op

charSplit 191.6 ± 1.8

strSplit 527.9 ± 5.6

strSplit_pattern 416.2 ± 4.1

� charSplit has a fast-path for a single-char patterns
� strSplit uses Pattern to match: do not be suprised it works much slower
� strSplit_pattern reuses the Pattern: saves a few cycles
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Regexps: Other methods

Lots of other String methods are using Pattern implicitly:
� matches(String regex)

� replaceFirst(String regex, String replacement)

� replaceAll(String regex, String replacement)

� replace(CharSequence target, CharSequence replacement)

� split(String regex)

� split(String regex, int limit)

You may want to cache Pattern in performance-critical places.
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Regexps: Backtracking

Searching with Pattern.compile("(x+x+)+y"):

Text Time, ns/op

size "xx...xxy" "xx..xx"

4 94.5 ± 1.3

6 96.8 ± 1.0

8 102.7 ± 1.6

10 106.5 ± 5.1

12 106.7 ± 1.5

14 111.9 ± 1.5

16 115.6 ± 2.1
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Regexps: Backtracking

Searching with Pattern.compile("(x+x+)+y"):

Text Time, ns/op

size "xx...xxy" "xx..xx"

4 94.5 ± 1.3 291.8 ± 9.2

6 96.8 ± 1.0 1049.5 ± 7.2

8 102.7 ± 1.6 4028.0 ± 49.9

10 106.5 ± 5.1 15900.0 ± 263.3

12 106.7 ± 1.5 61694.5 ± 704.4

14 111.9 ± 1.5 245397.2 ± 1528.4

16 115.6 ± 2.1 989130.3 ± 11201.7

Given the mismatching text, the regexp catastrophically backtracks.
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Regexps: Catechism

Q: Should I care? I would never use regular expressions.
A: Yes, you will. Learn how to deal with them before it’s too late.

Q: Okay, what are the major improvements I can do?
A: Simplify and cache Pattern-s.

Q: Catastrophic backtracking sounds very theoretical, do I have to care?
A: Yes. Unsanitized texts and/or unsanitized regexps are the way to DoS.

Q: Stand back! I know Regular Expressions!
A: (stands back, and Engineer smacks into wall achieving enlightenment.)
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Walking
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Walking: charAt vs toCharArray

@Benchmark

public int charAt () {

int r = 0;

for (int c = 0; c < text.length (); c++) {

r += text.charAt(c);

}

return r;

}

@Benchmark

public int toCharArray () {

int r = 0;

char[] chars = text.toCharArray ();

for (int c = 0; c < text.length (); c++) {

r += chars[c];

}

return r;

}
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Walking: charAt vs toCharArray

Benchmark Size Time, ns/op

charAt 1 2.1 ± 0.1

charAt 10 4.8 ± 0.1

charAt 100 51.6 ± 0.1

charAt 1000 734.6 ± 0.3

toCharArray 1 6.5 ± 0.1

toCharArray 10 9.6 ± 0.1

toCharArray 100 61.2 ± 1.2

toCharArray 1000 1242.2 ± 4.6

� charAt bound-checks, but those are nicely optimized out
� toCharArray pays for spare memory allocation

Slide 75/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Walking: charAt vs toCharArray (spoiled)

@Benchmark

public int charAt_spoil () {

int r = 0;

for (int c = 0; c < text.length (); c++) {

spoiler (); // empty non -inlineable

r += text.charAt(c);

}

return r;

}

@Benchmark

public int toCharArray_spoil () {

int r = 0;

char[] chars = text.toCharArray ();

for (char c : chars) {

spoiler (); // empty non -inlineable

r += c;

}

return r;

}
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Walking: charAt vs toCharArray (spoiled)

Benchmark size Score, ns/op

charAt_spoil 1 4.7 ± 1.1

charAt_spoil 10 32.3 ± 0.1

charAt_spoil 100 607.9 ± 0.2

charAt_spoil 1000 10247.5 ± 1552.4

toCharArray_spoil 1 8.9 ± 0.1

toCharArray_spoil 10 28.5 ± 0.1

toCharArray_spoil 100 435.4 ± 3.3

toCharArray_spoil 1000 6559.9 ± 22.7

� When VM is unable to track text, devirt and bounds-check elimination fail
� Local array is perfectly fine
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Walking: Catechism

Q: Should I copy out the char[] array or not?
A: If you don’t need performance, both approaches are the question of style.

Q: I care about performance, should I copy out the char[] array?
A: You should, in non-trivial case.

Q: What is considered non-trivial case?
A: Non-local control flow, volatile reads, etc. that break commonning.

Q: This sucks. There is no universal best-performance way?
A: (silence was the answer, and Engineer left enligthened)
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Search
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Search: Character searches

Searching in "abcdefghiklmnopqrstuvxyz":

image Time, ns/op

indexOf lastIndexOf

a 1.3 ± 0.1 8.5 ± 0.1

m 4.8 ± 0.1 5.7 ± 0.1

z 7.3 ± 0.1 1.6 ± 0.1

� Both indexOf and lastIndexOf are 𝑂(𝑛), obviously
� Either is more performant if searched from the start or the end

Slide 80/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Search: Intrinsics

Benchmark Image Score, ns/op

+Opt -Opt6

indexOf abc 5.0 ± 0.1 4.9 ± 0.1

indexOf mno 7.0 ± 0.1 9.8 ± 0.1

indexOf xyz 11.5 ± 0.1 12.8 ± 0.1

lastIndexOf abc 13.9 ± 0.1 13.9 ± 0.1

lastIndexOf mno 10.5 ± 0.1 10.5 ± 0.1

lastIndexOf xyz 5.3 ± 0.1 5.3 ± 0.1

� Real implementation of indexOf is intrinsified
� Uses SSE/AVX extensions to search for a match

6-XX:+UnlockDiagnosticVMOptions -XX:DisableIntrinsic=::_indexOf
Slide 81/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Search: Genome Search

Searching for a sequence of codons in Human Y chromosome:

Benchmark Time, ms/op

indexOf 48.2 ± 0.4

� str.indexOf(im) is a naive search
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Search: Genome Search

Searching for a sequence of codons in Human Y chromosome:

Benchmark Time, ms/op

indexOf 48.2 ± 0.4

wikipediaBM 16.7 ± 0.4

� str.indexOf(im) is a naive search
� wikipediaBM is the copy-paste from Boyer-Moore wiki page7

7http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
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Search: Genome Search

Searching for a sequence of codons in Human Y chromosome:

Benchmark Time, ms/op

indexOf 48.2 ± 0.4

wikipediaBM 16.7 ± 0.4

matcherFind 21.2 ± 0.4

� str.indexOf(im) is a naive search
� wikipediaBM is the copy-paste from Boyer-Moore wiki page7

� pattern(im).matcher(str).find() also uses BM

7http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
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Search: Catechism

Q: Why there is no optimal string search algo in JDK?
A: «Optimal» is in the eye of beholder.

Q: Why would you maintain a trivial String.indexOf anyway?
A: Small images are working better with trivial search.

Q: Java sucks for <insert domain here> because of indexOf.
A: (points to 3rd party libraries, and Engineer leaves enlightened)
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Conclusion
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Conclusion: ...

� Strings are well-optimized:

– Learning what optimizations are
there, and how you can employ them
is a useful skill

– Learning what JDK/VM does is a
useful skill

� Performance advice has a generally low
«shelf life»:

– Re-learn stuff as you go
– Do not trust folklore
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