
java.lang.String Catechism
Stay Awhile And Listen

Aleksey Shipilёv

aleksey.shipilev@oracle.com, @shipilev

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract. It
is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release, and
timing of any features or functionality described for Oracle’s products remains at
the sole discretion of Oracle.

Slide 2/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intro

Slide 3/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Slide 4/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Slide 5/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intro: Disclaimers

All tests are done:
� ...by trained professionals: recheck1 the results before using them
� ...on 1x2x4 i7-4790K (4.0 GHz, HSW): that machine is fast
� ...running Linux x86_64, 3.13: latest stable Linux Kernel
� ...with a 8u40 EA x86_64: the latest and greatest JDK
� ...driven by JMH2: the latest and greatest benchmarking harness

1https://github.com/shipilev/article-string-catechism/
2http://openjdk.java.net/projects/code-tools/jmh/

Slide 6/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

https://github.com/shipilev/article-string-catechism/
http://openjdk.java.net/projects/code-tools/jmh/

Intro: Strings are abundant

� Humans communicate with text
� Machines follow suit and communicate with text as well: most source code
is text, many data interchange formats are text

� Anecdotal data from JEP 192: 25% of heap occupied by String objects
� Anecdotal data: String optimizations usually bring the immediate payoff

Understanding and avoiding cardinal sins is the road to awe.

Slide 7/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Internals

Slide 8/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Internals: java.lang.String inside

public final class String implements ... {

private final char[] value;

private int hash;

...

Strings are immutable:
� Can use/pass them without synchronization, and nothing breaks
� Can share the underlying char[] array, covertly from user

Slide 9/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Internals: java.lang.String internals

Quite a bit of space overhead:

java.lang.String object internals:

OFFSET SIZE TYPE DESCRIPTION

0 12 (object header)

12 4 char[] String.value

16 4 int String.hash

20 4 (alignment loss)

Instance size: 24 bytes

� 8..16 bytes: String header
� 4..4 bytes: String hashcode
� 12..16 bytes: char[] header
� 0..8 bytes: alignment losses

12..24 bytes against char[], 24..44 bytes against wchar_t*

Slide 10/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Internals: Catechism

Q: Should I use Strings to begin with?
A: Absolutely, when you are dealing with text data.

Q: What if memory footprint is a concern?
A: There are remedies for that, read on.

Q: I can wind up my own String implementation over char[]!
A: Sure you can, read on for caveats.

Q: Should I wind up my own String implementation?
A: (Silence was the answer, and Engineer left enlightened)

Slide 11/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Immutable

Slide 12/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Immutable: Strings are special

Slide 13/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Immutable: Stuck In A Loop

@Benchmark

public String string () {

String s = "Foo";

for (int c = 0; c < 1000; c++) {

s += "Bar";

}

return s;

}

Slide 14/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Immutable: Stuck In A Loop

@Benchmark

public String string () {

String s = "Foo";

for (int c = 0; c < 1000; c++) {

s += "Bar"; // newly created String here

}

return s;

}

Slide 14/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Immutable: Stuck In A Loop

@Benchmark

public String stringBuilder () {

StringBuilder sb = new StringBuilder ();

for (int c = 0; c < 1000; c++) {

sb.append("Bar");

}

return sb.toString ();

}

Slide 15/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Immutable: Stuck In A Loop

How bad could it be, anyway?

Benchmark Throughput, ops/s

string 3250 ± 18

stringBuffer 125270 ± 1005

stringBuilder 116173 ± 423

Lots of pain: here, 30x performance penalty for adding a thousand of Strings.
Compilers are only able to help so much (more later).

My JVM hovercraft is full of GC eels.

Slide 16/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Immutable: Catechism

Q: Why this is so painful?
A: Immutability almost always comes at a cost.

Q: But I like immutability, how to ease the pain?
A: Use Builders to construct immutable objects.

Q: Why can’t JDK/JVM optimize this for us?
A: It can, in many cases. But, there is no escape if you want the best possible
performance for all possible cases. (No Free Lunch)

Q: Do I need the best possible performance?
A: (Silence was the answer, and Engineer left enlightened)

Slide 17/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Concat

Slide 18/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Concat: Decompiling

@Benchmark

public String string_2 () {

return s1 + s2;

}

...compiles into:

public String string_2 ();

Code:

0: new #14 // java.lang.StringBuilder

3: dup

4: invokespecial #15 // StringBuilder.new()

7: aload_0

8: getfield #3 // s1:String;

11: invokevirtual #16 // StringBuilder.append(String);

14: aload_0

15: getfield #5 // s2:String;

18: invokevirtual #16 // StringBuilder.append(String);

21: invokevirtual #17 // StringBuilder.toString ();

24: areturn

Slide 19/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

SB: Decompiling

Not suprisingly,
StringBuilder.append chains are routinely optimized:

@Benchmark

public String sb_6() {

return new StringBuilder ()

.append(s1). append(s2). append(s3)

.append(s4). append(s5). append(s6)

.toString ();

}

@Benchmark

public String string_6 () {

return s1 + s2 + s3 + s4 + s5 + s6;

}

Try this with -XX:±OptimizeStringConcat to quantify...

Slide 20/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

SB: StringBuilder opts are good!

Benchmark N Score, ns/op Impr

-Opt +Opt

stringBuilder 1 14.0 ± 0.1 8.7 ± 0.1 +61%

stringBuilder 2 20.3 ± 0.2 12.1 ± 0.4 +68%

stringBuilder 3 27.0 ± 0.2 14.8 ± 0.1 +82%

stringBuilder 4 33.3 ± 0.5 21.1 ± 0.1 +58%

stringBuilder 5 38.6 ± 0.2 25.4 ± 0.1 +50%

stringBuilder 6 69.6 ± 1.0 29.9 ± 0.2 +133%

string 1 2.3 ± 0.1 2.3 ± 0.1 0%

string 2 20.4 ± 0.2 11.8 ± 0.1 +73%

string 3 27.1 ± 0.3 14.9 ± 0.1 +82%

string 4 33.0 ± 0.4 21.1 ± 0.1 +56%

string 5 38.0 ± 0.3 25.3 ± 0.1 +50%

string 6 70.1 ± 0.7 29.9 ± 0.3 +135%

Slide 21/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

SB: Implicit SB vs. Explicit Conversion

Because of that, people are surprised how this benchmark behaves:

private int x;

@Setup

void setup () { x = 1709; }

@Benchmark

String concat_Pre () { return "" + x; }

@Benchmark

String concat_Post () { return x + ""; }

@Benchmark

String integerToString () { return Integer.toString(x); }

@Benchmark

String stringValueOf () { return String.valueOf(x); }

Slide 22/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

SB: Implicit SB vs. Explicit Conversion (cont.)

Benchmark Score, ns/op

concat_Post 14.9 ± 0.1

concat_Pre 15.0 ± 0.1

integerToString 21.8 ± 0.1

stringValueOf 21.9 ± 0.3

Implicit concatenation is faster than explicit conversions?

� StringBuilder optimizations kick in, and append(int) is actually faster!
� And will be slower with -XX:-OptimizeStringConcat

Slide 23/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

SB: Side Effects

Let’s make it a little bit more complicated...

private int x;

@Setup

void setup () { x = 1709; }

@Benchmark

String concat_just () { return "" + x; }

@Benchmark

String concat_side () { x--; return "" + (x++); }

@Benchmark

String integerToString_just () { return Integer.toString(x); }

@Benchmark

String integerToString_side () { x--; return Integer.toString(x++); }

Slide 24/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

SB: Side Effects (cont.)

Benchmark Score, ns/op

concat_just 14.8 ± 0.1

integerToString_just 21.6 ± 0.1

stringValueOf_just 21.6 ± 0.1

concat_side 27.2 ± 0.3

integerToString_side 21.6 ± 0.1

stringValueOf_side 21.6 ± 0.2

� Once we have a side-effect in append() call, optimization bails out3

� On deopt, need to «unwind» the execution, but unable to do so for stores
� Moving the memory stores out of append() args helps

3https://bugs.openjdk.java.net/browse/JDK-8043677
Slide 25/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

https://bugs.openjdk.java.net/browse/JDK-8043677

Lazy Logging: Trouble

private int x;

private boolean enabled;

void log(String msg) {

if (enabled) {

System.out.println(msg);

}

}

@Benchmark

void heap_string () {

log("Wow ,␣x␣is␣such␣" + x + "!");

}

@Benchmark

void heap_string_guarded () {

if (enabled) {

log("Wow ,␣x␣is␣such␣" + x + "!");

}

}

� Concatenation happens before the
enabled check

� Wasting precious time
constructing the strings we don’t
care about

� Therefore, most people opt to
guard the logger calls before even
touching the strings

Slide 26/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Lazy Logging: Trouble

private int x;

private boolean enabled;

@Benchmark

void heap_lambda () {

log (() -> "Wow ,␣such␣" + x + "!");

}

@Benchmark

void noArg_lambda () {

log (() -> "Such␣message ,␣wow.");

}

@Benchmark

public void local_lambda () {

int lx = x;

log (() -> "Wow ,␣such␣" + lx + "!");

}

� We can do much better with
lambdas: deferred execution
without a syntactic mess

� There is a bit of the underlying
difference when referencing locals,
fields, or nothing

Slide 27/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Lazy Logging: Lazy Logging

Method Time, ns/op

heap local noArgs

string 19.3 ± 0.4 17.7 ± 0.2 0.4 ± 0.1

lambda 1.8 ± 0.1 1.8 ± 0.1 0.4 ± 0.1

string_guarded 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1

Lambdas rock! The explicit guard still wins, but not by a large margin:
capturing lambdas (yet) need instantiation.

Slide 28/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Concat: Catechism

Q: Should I be worried about concatenation costs?
A: You should in all non-trivial cases. You can’t help much in trivial cases.

Q: What concatenation cases are non-trivial?
A: Any pattern involving control flow, side effects, unpredictable values.

Q: Are StringBuilder-s flawless?
A: They are aggressively optimized, but sometimes even those optos fail.

Q: I am PL professional, give me lazy-val, call-by-name, and shut up.
A: (points to JDK 8 release, and PL professional leaves enlightened)

Slide 29/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Hash Codes

Slide 30/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Zeroes: P(31) hashcode

Spec says String.hashCode is a P(31) polynomial hashcode:

ℎ(𝑠) =
𝑛−1∑︀
𝑘=0

31𝑛−𝑘−1𝑠𝑘

public int hashCode () {

...

int h = 0;

for (char v : value) {

h = 31 * h + v;

}

hash = h;

}

Time complexity is Ω(𝑁) and 𝑂(𝑁).

Slide 31/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Zeroes: Trying...

String str1 , str2;

@Setup

public void setup() {

str1 = "лжеотождествление␣электровиолончели"; // same length

str2 = "электровиолончели␣лжеотождествление"; // same length

}

@Benchmark

int test1 () { return str1.hashCode (); }

@Benchmark

int test2 () { return str2.hashCode (); }

Slide 32/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Zeroes: Trying...

String str1 , str2;

@Setup

public void setup() {

str1 = "лжеотождествление␣электровиолончели"; // same length

str2 = "электровиолончели␣лжеотождествление"; // same length

}

@Benchmark

int test1 () { return str1.hashCode (); } // 22.6 ± 0.1 ns/op

@Benchmark

int test2 () { return str2.hashCode (); } // 0.7 ± 0.1 ns/op

Slide 32/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Zeroes: Actual Implementation

public int hashCode () {

int h = hash;

if (h == 0) {

for (char v : value) {

h = 31 * h + v;

}

hash = h;

}

return h;

}

� Actual code caches hashcodes
� Immense improvements in most
scenarios, justifying 4 bytes per
instance

� By pigeonhole principle, some
Strings are bound to have
ℎ𝑠(𝑠) = 0, sucks to be them

� It is a sane engineering tradeoff to
have a performance anomaly with
2−32 probability

Slide 33/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collisions: Walking on a Sunshine

// carefully populated with unicorn dust:

HashMap <String , String > sunshine;

@Benchmark void keySet(Blackhole bh) {

for (String key : sunshine.keySet ()) {

bh.consume(sunshine.get(key));

}

}

@Benchmark void entrySet(Blackhole bh) {

for (Map.Entry <String , String > e : sunshine.entrySet ()) {

bh.consume(e);

}

}

Slide 34/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collisions: Using JDK 7u0...

Benchmark Size Time, ns/op ns/key

entrySet 1 14.1 ± 0.1 14.1

entrySet 10 47.4 ± 0.2 4.7

entrySet 100 294.1 ± 0.9 2.9

entrySet 1000 5366.9 ± 802.8 5.4

entrySet 10000 67394.4 ± 456.5 6.7

keySet 1 18.4 ± 0.5 18.4

keySet 10 279.8 ± 6.7 27.8

keySet 100 22266.6 ± 179.6 222.7

keySet 1000 2716486.4 ± 10145.7 2716.5

keySet 10000 355309390.2 ± 1214802.8 355309.4

keySet performance rapidly deteriorates: 𝑂(𝑁2)

Slide 35/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collisions: Algorithmic Attacks

Polynomial hash functions make artificial collisions a piece of cake.
Suppose this expansion:

ℎ(𝑠) =
𝑛−1∑︀
𝑘=0

31𝑛−𝑘−1𝑠𝑘 = [
𝑛−3∑︀
𝑘=0

31𝑛−𝑘−1𝑠𝑘] + 31𝑠𝑛−2 + 𝑠𝑛−1

Then, if strings 𝑎 and 𝑏 have common prefix in [0..𝑛− 3]:

ℎ(𝑎) = ℎ(𝑏) ⇔ 31(𝑎𝑛−2 − 𝑏𝑛−2) = (𝑎𝑛−1 − 𝑏𝑛−1)

...and that is super-easy, suppose 𝑎 = ”...𝐴𝑎” and 𝑏 = ”...𝐵𝐵”.

Slide 36/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collisions: Why should I care?

� Alice is running her battle-hardened HTTP server, patched up for
Heartbleed, Shellshock, all these fancy-named vulnerabilities.
Alice is serious about security.

� Mallory giggles and sends the HTTP Request with these HTTP Headers:

"X-Conference -AaAaAaAa:␣JokerConf␣2014,␣Why␣So␣Serious?"

"X-Conference -AaAaAaBB:␣JokerConf␣2014,␣Why␣So␣Serious?"

"X-Conference -AaAaBBAa:␣JokerConf␣2014,␣Why␣So␣Serious?"

"X-Conference -AaAaBBBB:␣JokerConf␣2014,␣Why␣So␣Serious?"

� Alices’s web server accepts the request, stores HTTP Headers in
Map<String, String>, and then tries to process them. Boom, resource
exhaustion and possible DoS.

Slide 37/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collisions: Using JDK 8

Benchmark Size Time, ns/op ns/key

entrySet 1 11.6 ± 0.1 11.7

entrySet 10 36.3 ± 0.1 3.6

entrySet 100 278.1 ± 0.7 2.8

entrySet 1000 3606.7 ± 21.4 3.6

entrySet 10000 86459.5 ± 626.4 8.6

keySet 1 15.1 ± 0.1 15.0

keySet 10 253.2 ± 0.6 2.5

keySet 100 10072.5 ± 144.4 100.7

keySet 1000 158591.7 ± 1202.4 158.6

keySet 10000 2355039.3 ± 12087.3 235.3

keySet is now 𝑂(𝑁𝑙𝑜𝑔𝑁) – not as bad

Slide 38/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collisions: Another quirks

http://www.zlib.net/crc_v3.txt

In particular, any CRC algorithm that initializes its register to zero will
have a blind spot of zero when it starts up and will be unable to
"count"a leading run of zero bytes. As a leading run of zero bytes is
quite common in real messages, it is wise to initialize the algorithm
register to a non-zero value.

The same applies to String.hashCode.
Thank God, NUL-prefixed Strings are not common.

Slide 39/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://www.zlib.net/crc_v3.txt

Hash Codes: Catechism

Q: Should I care about String.hashCode?
A: Most likely not, unless you expose your naked Maps for user input.

Q: Should I wrap the Strings with my own hashCode implementation?
A: In some very rare cases, yes.

Q: Why we wouldn’t change the String.hashCode computation?
A: The P(31) hashcode is spec-ed in so many places, it can’t be changed now.

Q: That hashCode caching thing at zero bothers me, can be do a boolean flag?
A: That will explode String footprint by 8 bytes in worst case.

Slide 40/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Substring

Slide 41/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Substring: JDK 8

java.lang.String object internals:

OFFSET SIZE TYPE DESCRIPTION

0 12 (object header)

12 4 char[] String.value

16 4 int String.hash

20 4 (alignment loss)

Instance size: 24 bytes

Seasoned Java devs can wonder...

where are offset and count fields?

Slide 42/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Substring: JDK 8

java.lang.String object internals:

OFFSET SIZE TYPE DESCRIPTION

0 12 (object header)

12 4 char[] String.value

16 4 int String.hash

20 4 (alignment loss)

Instance size: 24 bytes

Seasoned Java devs can wonder... where are offset and count fields?

Slide 42/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Substring: JDK < 7u6

java.lang.String object internals:

OFFSET SIZE TYPE DESCRIPTION

0 12 (object header)

12 4 char[] String.value

16 4 int String.offset

20 4 int String.count

24 4 int String.hash

28 4 (alignment loss)

Instance size: 32 bytes

Here they are! Left behind the enemy lines in JDK < 7u6.

Slide 43/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Substring: Benchmark

@Param ({"0", "30", "60", "90", "120"})

int limit;

String str;

@Setup

public void setup() {

str = "JokerConf␣2014:␣Why␣So␣Serious?␣" +

"JokerConf␣2014:␣Why␣So␣Serious?␣" +

"JokerConf␣2014:␣Why␣So␣Serious?␣" +

"JokerConf␣2014:␣Why␣So␣Serious?␣";

}

@Benchmark

String head() { return str.substring(limit); }

@Benchmark

String tail() { return str.substring(0, limit); }

Slide 44/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Substring: JDK < 7u6: Sharing

Limit Time, ns/op

head tail

0 2.2 ± 0.1 3.7 ± 1.1

30 3.5 ± 0.2 3.6 ± 0.9

60 3.5 ± 0.2 3.4 ± 0.2

90 3.7 ± 0.4 3.4 ± 0.1

120 3.7 ± 1.0 3.4 ± 0.1

� substring() only instantiates Strings, shares char[] arrays
� This is believed to cause memory leaks: think large XML and substring on it

Slide 45/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Substring: JDK 8: Copying

Limit Time, ns/op

head tail

0 2.2 ± 0.1 19.4 ± 0.3

30 22.9 ± 0.1 10.1 ± 0.0

60 16.8 ± 0.1 15.2 ± 0.1

90 12.7 ± 0.1 21.7 ± 0.5

120 11.1 ± 0.3 26.6 ± 0.1

� substring() now copies the entire char[] array
� Works reasonably well for small substrings, avoids memory leaks

Slide 46/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Substring: Catechism

Q: New substring sounds bad, can I get it back?
A: No, you can’t.

Q: But why?
A: Real memory leaks are worse than potential performance issues.

Q: What if I need 𝑂(1) substring?
A: That means you care about this enough to make your own storage.

Q: But my application was using substring for performance reasons!
A: (Points to a String.substring Javadoc, and Engineer leaves enlightened)

Slide 47/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern

Slide 48/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: Interning vs. Deduplication

Deduplication:
Reduce # of instances in each equivalence class

Interning (canonicalization):
Reduce # of instances in each equivalence class to one (canonical) instance.

� As usual, enforcing stronger property costs more
� In many cases, you want deduplication, not interning

Slide 49/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: User Interners

Interning is dead-simple, and can be done by hand:

public class CHMInterner <T> {

private final Map <T, T> map;

public CHMInterner () {

map = new ConcurrentHashMap <>();

}

public T intern(T t) {

T exist = map.putIfAbsent(t, t);

return (exist == null) ? t : exist;

}

}

Slide 50/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: User Interners (cont.)

strings Time, us/op

chm hm intern

100 2.4 ± 0.1 0.9 ± 0.1 8.0 ± 0.3

10000 242.9 ± 0.944 133.8 ± 0.8 891.8 ± 13.6

1000000 47537.0 ± 2123.8 35349.2 ± 1188.8 315664.8 ± 17821.4

(Throw-away) (Concurrent)HashMap is order of magnitude better!

Slide 51/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: And the reason is:

String.intern() is a gateway to VM internal StringTable.
StringTable is fixed-size, and almost always overloaded:

-XX:+ PrintStringTableStatistics

StringTable statistics:

Number of buckets : 60013 = 480104 bytes , avg 8.000

Number of entries : 1002451 = 24058824 bytes , avg 24.000

Number of literals : 1002451 = 64168512 bytes , avg 64.012

Total footprint : = 88707440 bytes

Average bucket size : 16.704

Variance of bucket size : 9.731

Std. dev. of bucket size: 3.119

Maximum bucket size : 27

User-issued String.intern() calls only make it worse!

Slide 52/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: User Deduplicators

Relaxing the canonicalization requirement may bring the performance:

public class CHMDeduplicator <T> {

private final int prob;

private final Map <T, T> map;

public CHMDeduplicator(double prob) {

this.prob = (int) (Integer.MIN_VALUE + prob * (1L << 32));

this.map = new ConcurrentHashMap <>();

}

public T dedup(T t) {

if (ThreadLocalRandom.current (). nextInt () > prob) {

return t;

}

T exist = map.putIfAbsent(t, t);

return (exist == null) ? t : exist;

}

}

Slide 53/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: Probabilistic Deduplicators

time, us/op

Prob chm hm intern

0.0 3.2 ± 0.1 3.3 ± 0.1 3.3 ± 0.1

0.1 6.9 ± 0.1 7.3 ± 0.7 13.1 ± 0.1

0.2 10.4 ± 0.4 9.7 ± 0.7 22.4 ± 0.1

0.3 13.4 ± 0.2 12.1 ± 0.2 31.9 ± 0.3

0.4 16.4 ± 0.1 14.2 ± 0.1 40.3 ± 0.3

0.5 19.1 ± 0.1 15.9 ± 0.1 49.3 ± 0.8

0.6 21.7 ± 1.1 16.7 ± 0.2 56.6 ± 0.6

0.7 22.4 ± 0.2 16.0 ± 0.1 63.3 ± 1.1

0.8 23.7 ± 0.5 15.4 ± 0.1 70.7 ± 2.5

0.9 25.7 ± 0.9 14.0 ± 0.1 76.4 ± 0.7

1.0 26.1 ± 0.1 11.5 ± 0.1 118.5 ± 30.1

Slide 54/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: GC Deduplication

Why can’t JVM do this for us?

-XX:+UseG1GC -XX:+UseStringDeduplication

Slide 55/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: GC Deduplication

public static void main(String ... args) {

List <String > strs = ...;

String last = GraphLayout.parseInstance(strs). toFootprint ();

System.out.println("***␣Original:␣" + last);

for (int gc = 0; gc < 100; gc++) {

String cur = GraphLayout.parseInstance(strs). toFootprint ();

if (!cur.equals(last)) {

System.out.println("***␣GC␣changed:␣" + cur);

last = cur;

}

System.gc();

}

}

Use JOL4 to estimate the memory footprint.

4http://openjdk.java.net/projects/code-tools/jol/
Slide 56/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://openjdk.java.net/projects/code-tools/jol/

Intern: GC Deduplication

*** Original:

java.util.ArrayList instance footprint:

COUNT AVG SUM DESCRIPTION

10000 47 472000 [C

1 56232 56232 [Ljava.lang.Object;

10000 24 240000 java.lang.String

1 24 24 java.util.ArrayList

20002 768256 (total)

*** GC changed:

java.util.ArrayList instance footprint:

COUNT AVG SUM DESCRIPTION

100 47 4720 [C

1 56232 56232 [Ljava.lang.Object;

10000 24 240000 java.lang.String

1 24 24 java.util.ArrayList

10102 300976 (total)

Notice the char[] arrays are de-duplicated.

Slide 57/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: GC Deduplication

*** GC changed:

java.util.ArrayList instance footprint:

COUNT AVG SUM DESCRIPTION

100 47 4720 [C

1 56232 56232 [Ljava.lang.Object;

10000 24 240000 java.lang.String

1 24 24 java.util.ArrayList

10102 300976 (total)

*** Dedup:

java.util.ArrayList instance footprint:

COUNT AVG SUM DESCRIPTION

100 47 4720 [C

1 56232 56232 [Ljava.lang.Object;

100 24 2400 java.lang.String

1 24 24 java.util.ArrayList

202 63376 (total)

Hand-rolled deduplicator can also reduce the number of String-s.

Slide 58/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intern: Catechism

Q: But I read so much on using String.intern for improving footprint.
A: http://en.wikipedia.org/wiki/Hanlon’s_razor

Q: I will use String.intern just on this tiny little location.
A: Excellent, you already know where your bottlenecks are going to be.

Q: Why wouldn’t we optimize String.intern?
A: We are improving it. It does not help the misuse of String.intern.

Q: Should I rely on GC deduplication for ultimate memory savings?
A: Identity rules disallow us to merge objects, you have to merge them yourself.

Slide 59/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://en.wikipedia.org/wiki/Hanlon's_razor

Equals

Slide 60/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Equals: Testing basic things

String bar10_0 = "BarBarBarA", bar10_1 = "BarBarBarA";

String bar10_2 = "BarBarBarB", bar10_3 = "ABarBarBar";

String bar11 = "BarBarBarAB";

@Benchmark

boolean sameChar () { return bar10_0.equals(bar10_1); }

@Benchmark

boolean sameLen_diffEnd () { return bar10_0.equals(bar10_2); }

@Benchmark

boolean sameLen_diffStart () { return bar10_0.equals(bar10_3); }

@Benchmark

boolean differentLen () { return bar10_0.equals(bar11); }

Slide 61/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Equals: Basic characteristics

Benchmark Score, ns/op

sameChar 1.0 ± 0.1

differentLen 1.3 ± 0.1

sameLen_diffEnd 4.6 ± 0.1

sameLen_diffStart 2.6 ± 0.1

� Strings instantiated off the same constant are interned, == check is fast
� Strings of different lengths are not compared at all
� Strings are matched from start to end

Slide 62/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Equals: Implementation
public boolean equals(Object anObject) {

if (this == anObject) {

return true;

}

if (anObject instanceof String) {

String anotherString = (String)anObject;

int n = value.length;

if (n == anotherString.value.length) {

char v1[] = value;

char v2[] = anotherString.value;

int i = 0;

while (n-- != 0) {

if (v1[i] != v2[i])

return false;

i++;

}

return true;

}

}

return false;

}

«I think this version is well-
optimized, and you can gain
nothing here...»
(somebody on StackOverflow)

Slide 63/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Equals: Intrinsics

Benchmark Score, ns/op

default disabled5

sameChar 1.0 ± 0.1 1.1 ± 0.1

differentLen 1.3 ± 0.1 1.3 ± 0.1

sameLen_diffEnd 4.6 ± 0.1 9.7 ± 0.1

sameLen_diffStart 2.6 ± 0.1 3.0 ± 0.1

� The actual equals() implementation is intrinsified
� Blindly rewriting the Java implementation will not be faster
� How can intrinsified implementation be 2x faster than «optimal» Java code?

5-XX:+UnlockDiagnosticVMOptions -XX:DisableIntrinsic=::_equals
Slide 64/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Equals: Intrinsics (cont.)

Intrinsic version is vectorized:

5.23% 3.42% 0x00007f1b8c93de95: mov (%rdi ,%rcx ,1),%ebx

14.73% 4.01% 0x00007f1b8c93de98: cmp (%rsi ,%rcx ,1),%ebx

0x00007f1b8c93de9b: jne 0x00007f1b8c93debb

26.39% 27.41% 0x00007f1b8c93de9d: add $0x4 ,%rcx

0x00007f1b8c93dea1: jne 0x00007f1b8c93de95

� Notice comparing in 4-byte strides
� This works regardless of whether compiler can or can’t auto-vectorize
� VM will select SSE, AVX, etc to efficiently compare.

Slide 65/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Equals: Catechism

Q: I have this very nifty idea of optimizing String.equals...
A: If you are not prepared to deal with low-level assembly, do not even start.

Q: Why would you need a Java version for String.equals then?
A: Interpreter, C1, and other compilers still use this as the fallback code.

Q: Should I intern the Strings and then == on them instead?
A: It would be easier to just check the hashCode before.

Q: But interning is so much easier!
A: (silence is the answer, and Programmer leaves enlightened)

Slide 66/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Regexps

Slide 67/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Regexps: splitting

String text = "Глокая␣куздра␣штеко␣будланула␣бокра␣и␣курдячит␣бокрёнка.";

String textDup = text.replaceAll("␣", "␣␣");

Pattern pattern = Pattern.compile("␣␣");

@Benchmark

String [] charSplit () { return text.split("␣"); }

@Benchmark

String [] strSplit () { return textDup.split("␣␣"); }

@Benchmark

String [] strSplit_pattern () { return pattern.split(textDup); }

Slide 68/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Regexps: Splitting

Benchmark Time, ns/op

charSplit 191.6 ± 1.8

strSplit 527.9 ± 5.6

strSplit_pattern 416.2 ± 4.1

� charSplit has a fast-path for a single-char patterns
� strSplit uses Pattern to match: do not be suprised it works much slower
� strSplit_pattern reuses the Pattern: saves a few cycles

Slide 69/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Regexps: Other methods

Lots of other String methods are using Pattern implicitly:
� matches(String regex)

� replaceFirst(String regex, String replacement)

� replaceAll(String regex, String replacement)

� replace(CharSequence target, CharSequence replacement)

� split(String regex)

� split(String regex, int limit)

You may want to cache Pattern in performance-critical places.

Slide 70/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Regexps: Backtracking

Searching with Pattern.compile("(x+x+)+y"):

Text Time, ns/op

size "xx...xxy" "xx..xx"

4 94.5 ± 1.3

6 96.8 ± 1.0

8 102.7 ± 1.6

10 106.5 ± 5.1

12 106.7 ± 1.5

14 111.9 ± 1.5

16 115.6 ± 2.1

Slide 71/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Regexps: Backtracking

Searching with Pattern.compile("(x+x+)+y"):

Text Time, ns/op

size "xx...xxy" "xx..xx"

4 94.5 ± 1.3 291.8 ± 9.2

6 96.8 ± 1.0 1049.5 ± 7.2

8 102.7 ± 1.6 4028.0 ± 49.9

10 106.5 ± 5.1 15900.0 ± 263.3

12 106.7 ± 1.5 61694.5 ± 704.4

14 111.9 ± 1.5 245397.2 ± 1528.4

16 115.6 ± 2.1 989130.3 ± 11201.7

Given the mismatching text, the regexp catastrophically backtracks.

Slide 71/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Regexps: Catechism

Q: Should I care? I would never use regular expressions.
A: Yes, you will. Learn how to deal with them before it’s too late.

Q: Okay, what are the major improvements I can do?
A: Simplify and cache Pattern-s.

Q: Catastrophic backtracking sounds very theoretical, do I have to care?
A: Yes. Unsanitized texts and/or unsanitized regexps are the way to DoS.

Q: Stand back! I know Regular Expressions!
A: (stands back, and Engineer smacks into wall achieving enlightenment.)

Slide 72/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Walking

Slide 73/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Walking: charAt vs toCharArray

@Benchmark

public int charAt () {

int r = 0;

for (int c = 0; c < text.length (); c++) {

r += text.charAt(c);

}

return r;

}

@Benchmark

public int toCharArray () {

int r = 0;

char[] chars = text.toCharArray ();

for (int c = 0; c < text.length (); c++) {

r += chars[c];

}

return r;

}

Slide 74/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Walking: charAt vs toCharArray

Benchmark Size Time, ns/op

charAt 1 2.1 ± 0.1

charAt 10 4.8 ± 0.1

charAt 100 51.6 ± 0.1

charAt 1000 734.6 ± 0.3

toCharArray 1 6.5 ± 0.1

toCharArray 10 9.6 ± 0.1

toCharArray 100 61.2 ± 1.2

toCharArray 1000 1242.2 ± 4.6

� charAt bound-checks, but those are nicely optimized out
� toCharArray pays for spare memory allocation

Slide 75/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Walking: charAt vs toCharArray (spoiled)

@Benchmark

public int charAt_spoil () {

int r = 0;

for (int c = 0; c < text.length (); c++) {

spoiler (); // empty non -inlineable

r += text.charAt(c);

}

return r;

}

@Benchmark

public int toCharArray_spoil () {

int r = 0;

char[] chars = text.toCharArray ();

for (char c : chars) {

spoiler (); // empty non -inlineable

r += c;

}

return r;

}

Slide 76/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Walking: charAt vs toCharArray (spoiled)

Benchmark size Score, ns/op

charAt_spoil 1 4.7 ± 1.1

charAt_spoil 10 32.3 ± 0.1

charAt_spoil 100 607.9 ± 0.2

charAt_spoil 1000 10247.5 ± 1552.4

toCharArray_spoil 1 8.9 ± 0.1

toCharArray_spoil 10 28.5 ± 0.1

toCharArray_spoil 100 435.4 ± 3.3

toCharArray_spoil 1000 6559.9 ± 22.7

� When VM is unable to track text, devirt and bounds-check elimination fail
� Local array is perfectly fine

Slide 77/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Walking: Catechism

Q: Should I copy out the char[] array or not?
A: If you don’t need performance, both approaches are the question of style.

Q: I care about performance, should I copy out the char[] array?
A: You should, in non-trivial case.

Q: What is considered non-trivial case?
A: Non-local control flow, volatile reads, etc. that break commonning.

Q: This sucks. There is no universal best-performance way?
A: (silence was the answer, and Engineer left enligthened)

Slide 78/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Search

Slide 79/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Search: Character searches

Searching in "abcdefghiklmnopqrstuvxyz":

image Time, ns/op

indexOf lastIndexOf

a 1.3 ± 0.1 8.5 ± 0.1

m 4.8 ± 0.1 5.7 ± 0.1

z 7.3 ± 0.1 1.6 ± 0.1

� Both indexOf and lastIndexOf are 𝑂(𝑛), obviously
� Either is more performant if searched from the start or the end

Slide 80/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Search: Intrinsics

Benchmark Image Score, ns/op

+Opt -Opt6

indexOf abc 5.0 ± 0.1 4.9 ± 0.1

indexOf mno 7.0 ± 0.1 9.8 ± 0.1

indexOf xyz 11.5 ± 0.1 12.8 ± 0.1

lastIndexOf abc 13.9 ± 0.1 13.9 ± 0.1

lastIndexOf mno 10.5 ± 0.1 10.5 ± 0.1

lastIndexOf xyz 5.3 ± 0.1 5.3 ± 0.1

� Real implementation of indexOf is intrinsified
� Uses SSE/AVX extensions to search for a match

6-XX:+UnlockDiagnosticVMOptions -XX:DisableIntrinsic=::_indexOf
Slide 81/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Search: Genome Search

Searching for a sequence of codons in Human Y chromosome:

Benchmark Time, ms/op

indexOf 48.2 ± 0.4

� str.indexOf(im) is a naive search

Slide 82/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Search: Genome Search

Searching for a sequence of codons in Human Y chromosome:

Benchmark Time, ms/op

indexOf 48.2 ± 0.4

wikipediaBM 16.7 ± 0.4

� str.indexOf(im) is a naive search
� wikipediaBM is the copy-paste from Boyer-Moore wiki page7

7http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
Slide 82/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm

Search: Genome Search

Searching for a sequence of codons in Human Y chromosome:

Benchmark Time, ms/op

indexOf 48.2 ± 0.4

wikipediaBM 16.7 ± 0.4

matcherFind 21.2 ± 0.4

� str.indexOf(im) is a naive search
� wikipediaBM is the copy-paste from Boyer-Moore wiki page7

� pattern(im).matcher(str).find() also uses BM

7http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
Slide 82/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm

Search: Catechism

Q: Why there is no optimal string search algo in JDK?
A: «Optimal» is in the eye of beholder.

Q: Why would you maintain a trivial String.indexOf anyway?
A: Small images are working better with trivial search.

Q: Java sucks for <insert domain here> because of indexOf.
A: (points to 3rd party libraries, and Engineer leaves enlightened)

Slide 83/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Conclusion

Slide 84/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Conclusion: ...

� Strings are well-optimized:

– Learning what optimizations are
there, and how you can employ them
is a useful skill

– Learning what JDK/VM does is a
useful skill

� Performance advice has a generally low
«shelf life»:

– Re-learn stuff as you go
– Do not trust folklore

Slide 85/85. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

	Intro
	Internals
	Immutable
	Concat
	SB
	Lazy Logging
	Concat

	Hash Codes
	Zeroes
	Collisions
	Hash Codes

	Substring
	Intern
	Equals
	Regexps
	Walking
	Search
	Conclusion

