
Java Memory Model
...and the pragmatics of it

Aleksey Shipilev
aleksey.shipilev@oracle.com, @shipilev



The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.
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Intro
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Intro: Detector Slide
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Intro: Abstract Machines

� Every programming language describes its semantics via the
semantics of the abstract machine executing the source program

� Language spec = abstract machine spec1

Very obvious example:
Brainfuck2 is a very straight-forward

assembly language for the Turing Machine

1Java ̸= Java bytecode ⇒ Java spec ̸= JVM spec
2http://en.wikipedia.org/wiki/Brainfuck
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Intro: Memory Model

� The significant part of abstract machine specification is the
model of machine storage = memory model

� To serve its purpose, the memory model only needs to answer
one simple question:

What values can a particular read in the program return?
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Intro: Sequential programs are easy!

� Program executes sequentially? The memory model is obvious:

«The reads should see the values written by
the latest writes in program order»3

� Most people infer that «memory model» really means the
«memory model which covers the semantics of multi-threaded
programs»

3e.g. for C99: ISO/IEC 9899:1999, «5.1.2.3 Program execution»
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Intro: ...is not that easy

� Famous C 89/99 example:

int i = 5; (.)
i = (++i + ++i); (.)
assert (13 == i); (.) // FAILS

� The absence of sequence points4 leads to undefined behavior
(implementations are free to do things in between (.) (.))

� Memory models are also needed to reason about single-threaded
programs

4ISO/IEC 9899:1999, «Annex C: Sequence Points»
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Intro: Coming back to reality
Language implementations are doing either of two things:

1. Emulate the abstract machine, and run the source program on
that emulation («interpretation»)

2. Specialize the abstract machine for given source program, and
run the resulting executable («compilation»)

In both cases an implementation
needs to match the semantics of abstract machine.

Translation:
Interpreters are not immune from memory model issues.
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Intro: Memory Model is a Trade-Off

How hard it is to use a language?
vs.

How hard it is to build a language implementation?
vs.

How hard it is to build appropriate hardware?

� Sweet new language X can offer tons of juicy features, but will
the humanity spend another million years trying to build the
high-performance and conforming implementation of it?
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Intro: The Logic of the Talk

We frame this talk as following:
1. Express our desires for language semantics
2. Look what is actually available in the real world
3. Understand how spec balances between (1) and (2)
4. See how the conservative implementations work
5. Peek at some other languages

Formal JMM definitions go in the blocks like these
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Access atomicity
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Access atomicity: Fairy Tale

What do we want?
Access atomicity for all built-in types:

That is, for any built-in T:

T t = V1;
t = V2; T r1 = t;

assert (r1 ∈ {𝑉 1, 𝑉 2})
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Access atomicity: Reality

Need the hardware support for atomic reads/writes

Caveats:
� The absence of hardware-assisted operations for large reads:

how would one read 8-byte long on 32-bit x86? 32-bit ARM?
� Memory subsystem requirements: e.g. crossing the cache line

usually loses the access atomicity
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Access atomicity: Compromise (1/2)

Reads/writes are atomic for everything, except long and double

volatile long and volatile double are atomic

� References have the machine bitness
� Almost all HW in 2004 was able to read 32 bits at once, 64 bits

read/writes needed the spec relaxation
� Can regain the atomicity (highlighting the performance penalty)
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Access atomicity: Compromise (2/2)

Very often the misaligned access loses atomicity
(an almost everywhere loses the performance)

� The implementations are forced to align data:
o.o.j.samples.JOLSample_02_Alignment.A5

OFFSET SIZE TYPE DESCRIPTION
0 12 (object header)

12 4 (alignment/padding gap)
16 8 long A.f

5http://openjdk.java.net/projects/code-tools/jol/
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Access atomicity: Quiz

What does it print?

AtomicLong al = new AtomicLong();
al.set(-1L); println(al.get());

Why not 0 x FFFF FFFF 0000 0000?
No magic involved: «volatile long» guarantees atomicity.
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Access atomicity: Value types

� Everyone thinks they want to have value types. Among all the
benefits, they bring some new memory model issues

� For example, С/C++11 atomics require atomicity for any POD:

typedef struct TT {
int a, b, c, ..., z; // 104 bytes

} T;
std::atomic<T> atomic();
atomic.set(T()); T t = atomic.get();

� The implementation is forced to face the music
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Access atomicity: JMM 9

� The exceptions for long/double were pragmatic in 2004
– 32-bit x86 everywhere
– Very simplistic ARMs, and no 64-bit PowerPCs

� It is 2014 now!
– Are there many 32-bit machines in server world now?
– Even 32-bit machines have a selection of 64-bit instructions
– Most of the platforms have de-facto atomic long/double
– ...but we require volatile anyway, because of WORA

� Q: Is it a good time to purge these exceptions?
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Access atomicity: JMM 9

6

x86, Ivy Bridge, 64-bit:

No difference at all:
� double is already atomic
� long has native bitness

6http://shipilev.net/blog/2014/all-accesses-are-atomic/
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Access atomicity: JMM 9

7

x86, Ivy Bridge, 32-bit:

Slight difference:
� double is already atomic
� long works via vector

instructions

7http://shipilev.net/blog/2014/all-accesses-are-atomic/
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Access atomicity: JMM 9

8

ARMv7, Cortex-A9, 32-bit:

Slight difference:
� double is already atomic
� long works via vector

instructions

8http://shipilev.net/blog/2014/all-accesses-are-atomic/
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Word tearing
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Word tearing: Fairy tale

What do we want?
Independence of operations over independent elements

(fields, array elements, etc.):

T[] as = new T[...]; as[1] = as[2] = V0;
as[1] = V1; as[2] = V1;

<term> <term> <join both>
T r1 = as[1];
T r2 = as[2];

assert (r1 == r2)
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Word tearing: Reality

Need the hardware support for independent reads/writes

Caveats:
� The absence of hardware-assisted read/writes for small types:

how would one atomically write the 1-bit boolean, if you can
only write 𝑁 (𝑁 ≥ 8) bits?
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Word tearing: Compromise

Word tearing is prohibited.

� Most hardware can address 8 bits and up
� If hardware can address as low as 𝑁 bits, then a sane language

implementation will have the minimal base type width of 𝑁 bits
� E.g. on most platforms no built-in Java type loses space (except

for 8-bit boolean)
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Word tearing: Experimental Proof

Objects are aligned by 8 bytes.
Every data type, except for boolean,
has the width fitting the value domain:

$ java -jar jol -internals.jar ...
Running 64-bit HotSpot VM.
Using compressed references with 3-bit shift.
Objects are 8 bytes aligned.
Field sizes by type: 4, 1, 1, 2, 2, 4, 4, 8, 8 [bytes]
Array element sizes: 4, 1, 1, 2, 2, 4, 4, 8, 8 [bytes]
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Word tearing: Quiz

What does it print?

BitSet bs = new BitSet();
bs.set(1); bs.set(2);

<term> <term> <join both>
println(bs.get(1));
println(bs.get(2));

Any9 of (T, T), (F, T), (T, F).

9Is there an implementation which can print (F, F)?
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Word tearing: Bit fields

� Everyone thinks they want a generic way to control the object
layout in Java. Control this:

typedef struct TT {
unsigned a:7;
unsigned b:3;

} T;
T t;

t.a = 42; r1 = t.b;

� The implementation is forced to face the music on every
access to either a or b. (C/C++11 relaxed this!)
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Word tearing: JMM 9
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SC-DRF
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SC-DRF: Fairy Tale

What do we want?
A simple way to reason about correctness.

opA(); opD();
opB(); opE();
opC(); opF();

Very easy to reason if each thread executes in order,
thread executions interleave.
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SC-DRF: Fairy Tale (formal)

Sequential Consistency (SC):

(Lamport, 1979): «...the result of any execution is the same as if the
operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this
sequence in the order specified by its program.»
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SC-DRF: Fairy Tale (formal)

SC is rather tricky:
� We can change the program in whatever fashion we want,

provided there is an execution of the original program which
yields SC result

int a = 0, b = 0;
a = 1; b = 2;

print(b); print(a);
→

...
print(2); print(1);
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SC-DRF: Reality

� The relationship between code transformations and memory
model can be expressed via read/write reorderings

� Does this transformation break SC?

int a = 0, b = 0;
r1 = a;
r2 = b;

→
int a = 0, b = 0;

r2 = b;
r1 = a;
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SC-DRF: Reality

int a = 0, b = 0;
r1 = a; b = 2;
r2 = b; a = 1;

→

int a = 0, b = 0;
r2 = b;

b = 2;
a = 1;

r1 = a;

� Source program executed under SC has either «r2 = b» or «a
= 1» as the last statement, hence (r1, r2) is either (*, 2)
or (0, *).

� Modified program yields (r1, r2) = (1, 0)
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SC-DRF: Reality

Sequential Consistency is very appealing model.
Somebody submit a JEP already!

� Very hard to tell what transformations are not breaking SC
� In theory, some cool and fancy Global MetaOptimizer (GMO) is

able to analyse this
� In practice, however, both runtimes and hardware are GMO-free
⇒ most optimizations are forbidden
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SC-DRF: HW Reality

Hardware speculates and reorders stuff a lot
(for performance!)

10

10http://en.wikipedia.org/wiki/Memory_ordering
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SC-DRF: a few definitions

� Two memory accesses conflict, if they use the same memory
location, and at least one of the accesses is write

� The program contains a data race, if two memory accesses
conflict, and happen simultaneously (i.e. are not ordered by
synchronization)

Racy programs yield suprising results!
The language is forced to provide access ordering mechanincs.
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SC-DRF: Compromise

Need a weaker model!
(<trade-off rant goes here>)

If we are careful enough:
� Many profitable optimizations are allowed
� Most developers are not suicidal after learning the rules
� The language spec is actually readable
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SC-DRF: JMM Formalism TL;DR;

� JMM specifies what outcomes are allowed by the language

� JMM defines actions. Actions take values with them: e.g.
«read(x, 1)» means we actually read «1» from «x». The
outcome of the particular program is allowed only if there is an
action reading the value which outcome desires

� Actions are aggregated in executions, which have orders over
actions (

𝑝𝑜−→, 𝑠𝑜−→, 𝑠𝑤−→, ℎ𝑏−→). Valid execution yields the desired
outcome ⇒ the outcome is allowed

Slide 41/116. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



SC-DRF: Program Order

Program Order (PO) binds the intra-thread actions

if (x == 2) { read(x):1

y = 1;

} else {

z = 1; write(z,1)

}

r1 = y; read(y):?

po

po
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SC-DRF: Program Order

PO is total order
(Note the program statements are not in total order!)

if (x == 2) { read(x):2

y = 1; write(y,1)

} else {

z = 1;

}

r1 = y; read(y):1

po

po
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SC-DRF: Towards the viable executions

Somewhere in the set of
all possible executions may
lie the execution which
justifies the outcome for the
program.

JMM’s purpose in life
is to figure out if there is
such an execution.
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SC-DRF: Program Order

Intra-thread consistency: for each thread, the order of actions
in PO is consistent with threads’ isolated executions

if (x == 2) { read(x):2

y = 1;

} else {

z = 1; write(z,1)

}

r1 = y; read(y):1

po

po
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SC-DRF: PO constraints

Intra-thread consistency
filters out the executions
that can be used to
reason about the particular
program.

This is the only link
between JMM and the rest
of the language spec.
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SC-DRF: Synchronization Actions

Weak memory models do not order all the actions,
only the special actions are ordered.

Synchronization Actions (SA) :
� volatile read, volatile write
� lock monitor, unlock monitor
� (synthetic) first and last actions in threads
� actions detecting the thread had terminated (Thread.join(),

Thread.isInterrupted(), etc)
� actions that start the thread
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SC-DRF: Synchronization Order

Synchronization Actions form the Synchronization Order (SO)

� SO is total order
– every thread observes SA in same order
– that’s the only cross-thread that needs to be total

� SA order in PO is coherent with SO
– SA within the single thread are observed in program order
– lock/unlock invariants are still sound

� Synchronization order consistency :
All reads in SO see the last writes in SO.
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SC-DRF: SO constraints, Dekker example

volatile int x, y;
x = 1; y = 1;
int r1 = y; int r2 = x;

Think about it: what (r1, r2) outcomes are allowed?
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SC-DRF: SO constraints, Dekker

volatile int x, y;

x = 1; write(x, 1) y = 1; write(y, 1)

int r1 = y; read(y):? int r2 = x; read(x):?

Because of intra-thread consistency, we only consider the executions
with these four actions
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SC-DRF: SO constraints, Dekker

volatile int x, y;

x = 1; write(x, 1) y = 1; write(y, 1)

int r1 = y; read(y):? int r2 = x; read(x):?

po po

Intra-thread actions are bound by
po
−−→
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SC-DRF: SO constraints, Dekker

volatile int x, y;

x = 1; write(x, 1) y = 1; write(y, 1)

int r1 = y; read(y):? int r2 = x; read(x):?

po po

All these actions are over volatile, hence they are in SO. However,
SO can be laid in a few different ways...
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SC-DRF: SO constraints, Dekker

volatile int x, y;

x = 1; write(x, 1) y = 1; write(y, 1)

int r1 = y; read(y):? int r2 = x; read(x):?

po poso

so

so

Case 1:
so
−→ is NOT consistent with

po
−−→,

execution should be thrown away
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SC-DRF: SO constraints, Dekker

volatile int x, y;

x = 1; write(x, 1) y = 1; write(y, 1)

int r1 = y; read(y):? int r2 = x; read(x):?

po poso

so

so

Case 2:
so
−→ is consistent with

po
−−→, and because of SO consistency

the reads are obliged to observe read(y):0 and read(x):1
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SC-DRF: SO constraints, Dekker

volatile int x, y;

x = 1; write(x, 1) y = 1; write(y, 1)

int r1 = y; read(y):? int r2 = x; read(x):?

po po

so

so

so

Case 3:
so
−→ is consistent with

po
−−→, and because of SO consistency

the reads are obliged to observe read(y):1 and read(x):1
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SC-DRF: Observation: SA are SC!

Synchronization actions are sequentially consistent!

volatile int x, y;
x = 1; y = 1;
int r1 = y; int r2 = x;

� The last action in program order will come last
� Therefore, either read(y):? or read(x):? will come last, and

observe the corresponding write
� Therefore, (r1, r2) = (0, 0) is forbidden
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SC-DRF: SO constraints, IRIW

Another classic, «Independent Reads of Independent Writes» (IRIW):

volatile int x, y;
x = 1; y = 1; int r1 = y; int r3 = x;

int r2 = x; int r4 = y;

� All executions yielding (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1, 0, 1, 0) break either
SO or SO-PO consistency, and hence forbidden

� Sprinkle enough volatiles around the Java program, and it
will eventually turn into sequentially consistent!
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SC-DRF: SO constraints

Synchronization order
consistency provides the SC
skeleton for the program.

This is the only total
ordering of inter-thread
actions required by the
spec.
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SC-DRF: Problems with SO

SO alone is not enough to provide a weaker model:
� SO seems «all or nothing»: either you turn all the operations

into SA, or you let non-SA operations to float around without
constraints, breaking your programs

� Annotating the entire program with volatile-s (or locks) turns
the program into SC at the expense of optimizations

� Need another weaker order for non-SA operations
(Spoiler alert: happens-before)
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SC-DRF: HB precursors, publication

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):?

g = 1; write(g, 1) int r2 = x; read(x):?

Think about it: is (r1, r2) = (1, 0) allowed?
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SC-DRF: HB precursors, publication

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):?

g = 1; write(g, 1) int r2 = x; read(x):?

so
−→ only orders the actions over g!

Yields either read(g):0, or read(g):1

so
so
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SC-DRF: HB precursors, publication

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):?

g = 1; write(g, 1) int r2 = x; read(x):?

There are valid executions either with
read(x):0, or with read(x):1,
regardless of read(g):? result

so
so
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SC-DRF: Synchronizes-With Order (SW)

� PO does not order the actions in the different threads
� Reasoning about inter-thread executions needs something that

orders actions across different threads
� So far it was only SO, but SO is total, and using it will impose

SC constraints. Therefore, we need some additional partial order:
Synchronizes-With Order (SW):

SO suborder, constrained for
concrete reads/writes, locks/unlocks, etc.

Slide 56/116. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



SC-DRF: Synchronizes-With (SW)

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):0

g = 1; write(g, 1) int r2 = x; read(x):?

Most SA are not bound in
sw
−−→
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SC-DRF: Synchronizes-With (SW)

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):1

g = 1; write(g, 1) int r2 = x; read(x):?

sw

If one SA sees the other, then they are bound in
sw
−−→.

This gives «inter-thread semantics».
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SC-DRF: Synchronizes-With (SW)

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):1

g = 1; write(g, 1) int r2 = x; read(x):?

po posw

Add
po
−−→ for remaining actions.

This gives «intra-thread semantics».
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SC-DRF: Happens-before (HB)

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):1

g = 1; write(g, 1) int r2 = x; read(x):?

hb hbhb

hb
−−→ = transitive closure over union of

po
−−→ and

sw
−−→
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SC-DRF: Happens-before (HB)

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):1

g = 1; write(g, 1) int r2 = x; read(x):?

hb hbhb

HB consistency : the reads observe the immediately preceeding write

in
hb
−−→, or something else via the race
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SC-DRF: Happens-before (HB)

Let: 𝑊 (𝑟) be the write observed by 𝑟, and 𝐴 be the set of all
program actions. Then happens-before consistency:

∀𝑟 ∈ 𝑅𝑒𝑎𝑑𝑠(𝐴) : ¬(𝑟
hb
−−→ 𝑊 (𝑟))∧

¬(∃𝑤 ∈ 𝑊𝑟𝑖𝑡𝑒𝑠(𝐴) : (𝑊 (𝑟)
hb
−−→ 𝑤) ∧ (𝑤

hb
−−→ 𝑟))
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SC-DRF: Happens-before (HB)

Let: 𝑊 (𝑟) be the write observed by 𝑟, and 𝐴 be the set of all
program actions. Then happens-before consistency:

∀𝑟 ∈ 𝑅𝑒𝑎𝑑𝑠(𝐴) : ¬(𝑟
hb
−−→ 𝑊 (𝑟)) ∧

¬(∃𝑤 ∈ 𝑊𝑟𝑖𝑡𝑒𝑠(𝐴) : (𝑊 (𝑟)
hb
−−→ 𝑤) ∧ (𝑤

hb
−−→ 𝑟))

Either 𝑊 (𝑟) not ordered with 𝑟 (race), or 𝑊 (𝑟)
hb
−−→ 𝑟
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SC-DRF: Happens-before (HB)

Let: 𝑊 (𝑟) be the write observed by 𝑟, and 𝐴 be the set of all
program actions. Then happens-before consistency:

∀𝑟 ∈ 𝑅𝑒𝑎𝑑𝑠(𝐴) : ¬(𝑟
hb
−−→ 𝑊 (𝑟))∧

¬(∃𝑤 ∈ 𝑊𝑟𝑖𝑡𝑒𝑠(𝐴) : (𝑊 (𝑟)
hb
−−→ 𝑤) ∧ (𝑤

hb
−−→ 𝑟))

There are no intervening writes (only care if 𝑊 (𝑟)
hb
−−→ 𝑟)
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SC-DRF: HB constraints

Happens-before consistency
allows to order the ordinary
operations across the
threads.

HB makes sense only
for the same variable.
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SC-DRF: Definition

SequentialConsistency-DataRaceFree:
«Correctly synchronized programs

have sequentially consistent semantics»

� Translation: No races ⇒ All reads see properly ordered writes ⇒
the outcome can be explained by some SC execution

� Intuition #1: Local operations (almost) always have the
outcomes explainable by SC

� Intuition #2: Operations over global data are synchronized with
SW-inducing primitives, and are SC
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SC-DRF: HB, Publish

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):?

g = 1; write(g, 1) int r2 = x; read(x):?

Let’s analyse with HB consistency rules...
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SC-DRF: HB, Publish

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):1

g = 1; write(g, 1) int r2 = x; read(x):1

hb hbhb

Case 1: HB consistent, observe the latest write in
hb
−−→

(𝑟1, 𝑟2) = (1, 1)
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SC-DRF: HB, Publish

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):0

g = 1; write(g, 1) int r2 = x; read(x):0

hb hb

Case 2: HB consistent, observe the default value
(𝑟1, 𝑟2) = (0, 0)
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SC-DRF: HB, Publish

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):0

g = 1; write(g, 1) int r2 = x; read(x):1

hb hb

Case 3: HB consistent (!), reading via race!
(𝑟1, 𝑟2) = (0, 1)
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SC-DRF: HB, Publish

int x; volatile int g;

x = 1; write(x, 1) int r1 = g; read(g):1

g = 1; write(g, 1) int r2 = x; read(x):0

hb hbhb

Case 4: HB inconsistent, execution can be thrown away
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SC-DRF: Publication

volatile int g;
...writes, writes, writes... ...

write(g, 1) read(g):1

... ...reads, reads, reads...

acquire

release

hb

Previous example can be generalized as «safe publication»:
� Works only on the same variable

� Works only if we observed the release-store
� Always paired! You can’t make one-sided release, without

doing acquire on other side
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SC-DRF: Publication

volatile int g;
...writes, writes, writes... ...

write(g, 1) read(g):1

... ...reads, reads, reads...

acquire

release

hb

Previous example can be generalized as «safe publication»:
� Works only on the same variable
� Works only if we observed the release-store

� Always paired! You can’t make one-sided release, without
doing acquire on other side
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SC-DRF: Publication

volatile int g;
...writes, writes, writes... ...

write(g, 1) read(g):1

... ...reads, reads, reads...

acquire

release

hb

Previous example can be generalized as «safe publication»:
� Works only on the same variable
� Works only if we observed the release-store
� Always paired! You can’t make one-sided release, without

doing acquire on other side
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SC-DRF: Quiz

CR 9234251: Optimize getter in C.get()

class C<T> {
T val;
public synchronized void set(T v) {

if (val == null) { val = v; }
}
public synchronized T get() {

// TODO FIXME PLEASE PLEASE PLEASE:
// THIS ONE IS TOO HOT IN PROFILER !!!111 ONEONEONE
return val;

}
}
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SC-DRF: Quiz

RFR (XS) CR 9234251: Optimize getter in C.get():

class C<T> {
T val;
public synchronized void set(T v) {

if (val == null) { val = v; }
}
public T get() {

// This one is safe without the synchronization.
// (Yours truly , CERTIFIED SENIOR JAVA DEVELOPER)
return val;

}
}

Slide 65/116. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



SC-DRF: Quiz

RFR (XS) CR 9234251: Optimize getter in C.get():
class C<T> {

static volatile int BARRIER; int sink;
T val;
public synchronized void set(T v) {

if (val == null) { val = v; }
}
public T get() {

sink = BARRIER; // acquire membar
// Obviously , we need a memory barrier here!
// (Yours truly , SUPER COMPILER GURU)
return val;

}
}
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SC-DRF: Quiz

That’s better: get back SW edge, get back HB.

class C<T> {
volatile T val;
public synchronized void set(T v) {

if (val == null) { val = v; }
}
public T get() {

// This one is safe without the synchronization.
// <Sigh >. Now it’s safe.
// ($PROJECT techlead , overseeing certified idiots)
return val;

}
}
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ENTR’ACTE.
Coming back in 10 minutes.
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SC-DRF: Roach Motel

One interpretation of the
model allows for a simple
class of optimizations,

«Roach Motel»
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SC-DRF: Roach Motel

int x, y;
volatile int g;

write(x, 1) read(x):?

release(g) acquire(g)

write(y, 1) read(y):?

hb

hb

hbhb

write(y, 1) can be reordered
before release, since it does
not break dependencies for 𝑥,
and read(y):? on the right
can see that store via the race
anyway
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SC-DRF: Roach Motel

int x, y;
volatile int g;

write(x, 1) read(x):?

release(g) acquire(g)

write(y, 1) read(y):?

hb

hb

hbhb

read(x):? can be reordered
after acquire, since it can
observe write(x, 1) via the
race

Slide 70/116. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



SC-DRF: Roach Motel

int x, y;
volatile int g;

write(x, 1) read(x):?

release(g) acquire(g)

write(y, 1) read(y):?

hb

hb

hbhb

Therefore, «reorderable after
acquire» + «reorderable
before release» = «movable
into acquire+release
blocks» ⇒ lock coarsening is
working
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SC-DRF: Roach Motel

int x, y;
volatile int g;

write(x, 1) read(x):?

release(g) acquire(g)

write(y, 1) read(y):?

hb

hb

hbhb

write(x, 1) can not be easily
reordered after release, since

we move it out from
hb
−−→.

Conservative implementation
has no idea if there is read of
𝑥, which should see it. GMO is
able to use global analysis, and
make this reordering.
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SC-DRF: Roach Motel

int x, y;
volatile int g;

write(x, 1) read(x):?

release(g) acquire(g)

write(y, 1) read(y):?

hb

hb

hbhb

read(y):? can not be easily
reordered before acquire,

since we move it out from
hb
−−→.

Conservative implementation
has no idea if there is a store
which it should observe. GMO
is able to use global analysis,
and make this reordering.
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SC-DRF: Quiz

What does it print? Possible answers: 0, 41, 42, 43, <nothing>

int a = 0;
volatile boolean ready = false;

a = 41; while(!ready) {};
a = 42; println(a);

ready = true;
a = 43;

Prints either 42 (latest in HB), or 43 (race).
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SC-DRF: Quiz

What does it print? Possible answers: 0, 41, 42, 43, <nothing>

int a = 0;
volatile boolean ready = false;

a = 41; while(!ready) {};
a = 42; println(a);

ready = true;
a = 43;

Prints either 42 (latest in HB), or 43 (race).
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SC-DRF: Quiz #2

What does it print? Possible answers: 0, 41, 42, 43, <nothing>

int a = 0;
boolean ready = false;

a = 41; while(!ready) {};
a = 42; println(a);

ready = true;
a = 43;

Every answer is possible (race, race, race)
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SC-DRF: Quiz #2

What does it print? Possible answers: 0, 41, 42, 43, <nothing>

int a = 0;
boolean ready = false;

a = 41; while(!ready) {};
a = 42; println(a);

ready = true;
a = 43;

Every answer is possible (race, race, race)
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SC-DRF: A few benchmarks

https://github.com/shipilev/jmm-benchmarks/

� 2x12x2 Xeon E5-2697, 2.70GHz
� OEL 6, JDK 7u40, x86_64
� We can only measure the performance

of some implementation, not the spec
itself
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� 2x12x2 Xeon E5-2697, 2.70GHz
� OEL 6, JDK 7u40, x86_64
� We can only measure the performance

of some implementation, not the spec
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SC-DRF: Hoisting

@State(Scope .( Benchmark|Thread ))
public static class Storage {

private (volatile) int v = 42;
}

@Benchmark
public int test(Storage s) {

int sum = 0;
for (int c = 0; c < s.v; c++) {

sum += s.v;
}
return sum;

}
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SC-DRF: Hoisting

It is not volatile that is scary, but broken optimizations:
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Summing up the field in for−loop

Slide 75/116. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



SC-DRF: Writes

@State(Scope .( Benchmark|Thread ))
public static class Storage {

private (volatile) int v = 42;
}

@Benchmark
public int test(Storage s) {

Blackhole.consumeCPU (8); // ~15ns
return s.v++;

}
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SC-DRF: Writes

It is not volatile that is scary, but data sharing:
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SC-DRF: JMM 9

� SC-DRF is agreed to be the successful model
– Formally known since 1990s
– Java adopted in 2004
– C/C++ adopted in 2011

� In some cases, SC is very expensive
– Ex: PowerPC + IRIW = kills some kittens
– Ex: Linux Kernel RCU = SC relaxations for ARM/PowerPC make

large performance increases ...and arguably without nasty drawbacks

� Q: Can we relax SC-DRF without obliterating the model?
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OoTA
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OoTA: Fairy Tale

«SC-DRF. All you need is love»

� Local code transformations are allowed until we hit the
synchronization primitive

� Local code transformations are playing with synchronizations by
some non-breaking rules (e.g. «roach motel»)

� If local transform messed with conflicting accesses, then there
was a race, and the user gets what was coming to him!

Slide 80/116. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



OoTA: Reality

But there are cases when local transforms break SC.

int a = 0, b = 0;
r1 = a; r2 = b;
if (r1 != 0) if (r2 != 0)

b = 42; a = 42;

Correctly synchronized:
all SC executions have no races.

The only possible result is (r1, r2) = (0, 0).
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OoTA: Optimizations

Let’s get a splice of speculative optimizations:
Why wouldn’t we unconditionally store to b, and then conditionally

rollback, if something changed?

int a = 0, b = 0;

int r1 = a;
if (r1 != 0)

b = 42;

→
int r1 = a;
b = 42;
if (r1 == 0)

b = 0;

→
b = 42;
int r1 = a;
if (r1 == 0)

b = 0;
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OoTA: Optimizations

Let’s get a splice of speculative optimizations:
Why wouldn’t we unconditionally store to b, and then conditionally

rollback, if something changed?

int a = 0, b = 0;

int r1 = a;
if (r1 != 0)

b = 42;

→
int r1 = a;
b = 42;
if (r1 == 0)

b = 0;

→
b = 42;
int r1 = a;
if (r1 == 0)

b = 0;
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OoTA: Oedipus closure

int a = 0, b = 0;
b = 42;

r2 = b;
if (r2 != 0)

a = 42;
r1 = a;
if (r1 == 0)

b = 0;

� Yields (r1, r2) = (42, 42)
� In the presence of races, the speculation may turn itself into the

self-justifying prophecy!
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OoTA: Out of Thin Air values

JLS TL;DR: Out of Thin Air values are forbidden

� If we read some value, then somebody else had written that for
us before

� JLS 17.4.8 makes a very complicated part of spec to give
substance for that «before» thing = «causality requirements»

� JMM defines the special process to validate the executions via
committing the actions from the executions
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OoTA: Commit semantics
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OoTA: Commit semantics
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OoTA: Commit semantics

Commit semantics does
the final checks for the
executions in order to
prevent causality violations.

This is needed to prevent
Out of Thin Air values.
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OoTA: ...Land of Mordor where the Shadows lie

The executions which
passed all the checks are
the executions we can use
to derive the outcomes
from.

We can filter out the
executions early if they are
not meeting at least one
the checks.
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OoTA: C/C++11

Rigorously specifying OoTA is a mammoth task.
(C/C++11 eventually gave up)

� Makes some easy specification choices (Pyrrhic victory?)
� C/C++1x WG is searching for the way to formally forbid

speculative optimizations giving rise to OoTA
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OoTA: JMM 9

We seem to be having three options:
1. Continue as we usual: try to simplify/fix the formal spec to aid

automatic checkers and humans as well
2. Conservatively forbid the speculative stores: that would mean

LoadStore before each store
3. Give up, and ask implementations to be «good»

Slide 89/116. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Finals
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Finals: Quiz

What does it print?
class A {

int f;
A() { f = 42; }

}

A a;

a = new A(); if (a != null)
println(a.f);

<nothing>, 0, 42, or throws NPE.
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int f;
A() { f = 42; }

}

A a;

a = new A(); if (a != null)
println(a.f);

<nothing>, 0, 42, or throws NPE.
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Finals: Quiz

This one does not throw NPE:
class A {

int f;
A() { f = 42; }

}

A a;

a = new A(); A ta = a;
if (ta != null)

println(ta.f);
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Finals: Fairy Tale

We would like to get only «42»:
class A {

????? int f;
A() { f = 42; }

}

A a;

a = new A(); A ta = a;
if (ta != null)

println(ta.f);
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Finals: Fairy Tale

We want to have objects which are safe to publish via races.

� ...so that security would not depend on some (malicious) moron
publishing the instance of our otherwise protected class via race

� ...so that we can skip some of the «excess» synchronization
actions for immutable objects
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Finals: Pragmatics

Final field guarantees are somewhat easy to enforce

� It is usually enough to order the final fields initializations and
the publishing of the instance. May require memory barriers.

� All known industrial architectures11 do not reorder the load
depending on another load.

11Alpha’s dead, baby, Alpha’s dead
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Finals: Formally

There is a «freeze action» at the end of constructor.

Freeze action «freezes» the field values

� If a thread reads the reference to new object with final fields,
then it will always observe the frozen values

� If a thread reads the reference to some other object through the
final field, then its state is at least as fresh as it was at the
moment of freeze
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Finals: Formally

(𝑤
hb
−−→ 𝐹

hb
−−→ 𝑎

mc
−−→ 𝑟1

dr
−→ 𝑟2) ⇒ (𝑤

hb
−−→ 𝑟2) ,

𝑤 – target field write, 𝐹 – freeze action, 𝑎 – some action (not the
final field read), 𝑟1 – final field read, 𝑟2 – target field read

Introduce two new partial orders:
� dereference order (dr) (access chains within the thread)

� memory order (mc) (access chains within/across the threads)
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hb
−−→ 𝐹

hb
−−→ 𝑎

mc
−−→ 𝑟1

dr
−→ 𝑟2) ⇒ (𝑤

hb
−−→ 𝑟2) ,

𝑤 – target field write, 𝐹 – freeze action, 𝑎 – some action (not the
final field read), 𝑟1 – final field read, 𝑟2 – target field read

If there is only a path via this chain of
hb
−−→,

dr
−→ and

mc
−−→, then we

can only observe the frozen value. But if there are other paths, it is
(probably) a racy read, and we can observe something else.

Slide 97/116. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Finals: Example12

Thread 1
T l = new T() {{

fx = 42; w
}}; f
GLOBAL = l; a

Thread 2
T o = GLOBAL; r0
if (o != null) {

int result = o.fx; r1 r2
}

Can we get result = 0?

12Courtesy Vladimir Sitnikov and Valentin Kovalenko
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}}; f
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Thread 2
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if (o != null) {

int result = o.fx; r1 r2
}

hb

hb

Inter-thread actions induce happens-before:

𝑤
hb
−−→ 𝑓 , 𝑓

hb
−−→ 𝑎

12Courtesy Vladimir Sitnikov and Valentin Kovalenko
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}}; f
GLOBAL = l; a

Thread 2
T o = GLOBAL; r0
if (o != null) {

int result = o.fx; r1 r2
}

hb

hb

mc

𝑟0 observes write 𝑎:
𝑎

mc
−−→ 𝑟0

12Courtesy Vladimir Sitnikov and Valentin Kovalenko
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Thread 1
T l = new T() {{

fx = 42; w
}}; f
GLOBAL = l; a

Thread 2
T o = GLOBAL; r0
if (o != null) {

int result = o.fx; r1 r2
}

hb

hb

mc

dr

Thread 2 did not create the object, 𝑟1 reads the object’s field, but 𝑟0
is the only action which reads object address, therefore we have

dereference chain:

𝑟0
dr
−→ 𝑟1

12Courtesy Vladimir Sitnikov and Valentin Kovalenko
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GLOBAL = l; a

Thread 2
T o = GLOBAL; r0
if (o != null) {

int result = o.fx; r1 r2
}

hb

hb

mc

dr

mc

𝑟0
dr
−→ 𝑟1 ⇒ 𝑟0

mc
−−→ 𝑟1
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Finals: Example12

Thread 1
T l = new T() {{

fx = 42; w
}}; f
GLOBAL = l; a

Thread 2
T o = GLOBAL; r0
if (o != null) {

int result = o.fx; r1 r2
}

hb

hb

mc

mc

mc

𝑎
mc
−−→ 𝑟1 (by MC transitivity)

12Courtesy Vladimir Sitnikov and Valentin Kovalenko
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Finals: Example12

Thread 1
T l = new T() {{

fx = 42; w
}}; f
GLOBAL = l; a

Thread 2
T o = GLOBAL; r0
if (o != null) {

int result = o.fx; r1 r2
}

hb

hb

mc

dr

Let 𝑟2 = 𝑟1, then 𝑟1
dr
−→ 𝑟2 (by DR reflectivity)

12Courtesy Vladimir Sitnikov and Valentin Kovalenko
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Finals: Example12

Thread 1
T l = new T() {{

fx = 42; w
}}; f
GLOBAL = l; a

Thread 2
T o = GLOBAL; r0
if (o != null) {

int result = o.fx; r1 r2
}

hb

hb

mc

dr

hb*

Found everything for 𝐻𝐵*:

𝑤
hb
−−→ 𝑓

hb
−−→ 𝑎

mc
−−→ 𝑟1

dr
−→ 𝑟2 ⇒ 𝑤

hb
−−→ 𝑟2

12Courtesy Vladimir Sitnikov and Valentin Kovalenko
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Finals: Example12

Thread 1
T l = new T() {{

fx = 42; w
}}; f
GLOBAL = l; a

Thread 2
T o = GLOBAL; r0
if (o != null) {

int result = o.fx; r1 r2
}

hb

hb

mc

dr

hb*

(𝑤
hb
−−→ 𝑟2) ⇒ r ∈ {42}

12Courtesy Vladimir Sitnikov and Valentin Kovalenko
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Finals: Pragmatics

All bets are off with premature publication:

T p, q;
T t1 = <new> T t2 = p T t4 = q
t1.f = 42 r2 = t2.f r4 = t4.f
p = t1 T t3 = q
<freeze t1.f> r3 = t3.f
q = t1

r4 ∈ {42};
however r2, r3 ∈ {0, 42}, because p had «leaked».
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Finals: Pragmatics

final fields are cacheable!13

� «All references are created equal»: do not have to track
complete/incomplete initializations

� As soon as an optimizer discovered the final field, it can cache
its value

� If an optimizer saw the under-initialized object, we are screwed!

13Well, not really.
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Finals: Quiz

What does it print?
class A {

final int f;
{ f = 42; }

}
A a;

a = new A(); A ta = a;
if (ta != null)

println(ta.f);

Of course, either 42 or <nothing>.
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Finals: JMM 9

In current spec, final is somewhat harsh:
� What if a field was initialized in constructor, and never ever

modified? (e.g. user forgot final)
� What if a field already bears volatile? (e.g. AtomicInteger)
� What if an object is built with builders?

Q: Should we extend the same guarantees to all fields and all
constructors?
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Finals: JMM 9

https://github.com/shipilev/jmm-benchmarks/

� 2x12x2 Xeon E5-2697, 2.70GHz;
OEL 6, JDK 8b121, x86_64

� 1x4x1 Cortex-A9, 1.7 GHz;
Linaro 12.11, JDK 8b121, SE
Embedded

� We can only measure the performance
of some implementation, not the spec
itself
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Finals: JMM 9: Initialization (chained)

@Benchmark
public Object test() {

return new Test_[N](v);
}

// chained case
class Test_[N] extends Test_[N-1] {

private [plain|final] int i_[N];
public <init >(int v) {

super(v);
i_[N] = v;

}
}
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Finals: JMM 9: Initialization (merged)

@Benchmark
public Object test() {

return new Test_[N](v);
}

// merged case
class Test_[N] {

private [plain|final] int i_1 , ..., i_[N];
public <init >(int v) {

i_1 = i_2 = ... = i_[N] = v;
}

}
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Finals: JMM 9: Results (x86)

Total Store Order has it for free:14

14http://shipilev.net/blog/2014/all-fields-are-final/
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Finals: JMM 9: Results (ARMv7)

Need barrier coalescing on weakly-ordered architectures: 15

15http://shipilev.net/blog/2014/all-fields-are-final/
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Conclusion
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Conclusion: Lingua Latina...

«The best way is to build up a small repertoire of constructions that
you know the answers for and then never think about the JMM rules
again unless you are forced to do so! Literally nobody likes figuring

things out from the JMM rules as stated, or can even routinely do so
correctly. This is one of the many reasons we need to overhaul JMM

someday.»

(Doug Lea, private communication, 2013)
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Conclusion: Known Problems

� JSR 133 Cookbook misses some machine-specific things, which
were discovered after JMM had been sealed

� Some library primitives are not expressible in current model (e.g.
lazySet, weakCompareAndSet)

� JMM is specified for Java, what guarantees other JVM
languages have?

� Formal spec has some errors which make automatic checkers cry
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Conclusion: JMM Overhaul

«Java Memory Model update»
http://openjdk.java.net/jeps/188

� Improved formalization
� JVM languages coverage
� Extended scope for existing unspec-ed primitives
� C11/C++11 compatibility
� Testing support
� Tool support
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Conclusion: Reading List

� Goetz et al, «Java Concurrency in Practice»
� Herilhy, Shavit, «The Art of Multiprocessor Programming»
� Adve, «Shared Memory Models: A Tutorial»
� McKenney,«Is Parallel Programming Hard, And, If So, What

Can You Do About It?»
� Manson, «Java Memory Model» (Special PoPL issue)
� Huisman, Petri, «JMM: The Formal Explanation»
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Q/A
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Backup
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Backup: Actions

Action: 𝐴 =< 𝑡, 𝑘, 𝑣, 𝑢 >
� 𝑡 – the thread performing the action
� 𝑘 – the kind of action
� 𝑣 – the variable or monitor involved in the action
� 𝑢 – an arbitrary unique identifier for the action
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Backup: Executions

Execution: 𝐸 =< 𝑃,𝐴,
𝑝𝑜−→,

𝑠𝑜−→,𝑊, 𝑉,
𝑠𝑤−→,

ℎ𝑏−→>
� 𝑃 – program; 𝐴 – set of program actions
�

𝑝𝑜−→ – program order;
�

𝑠𝑜−→ – synchronization order
�

𝑠𝑤−→ – synchronizes-with order
�

ℎ𝑏−→ – happens-before order
� 𝑊 (𝑟) – «write seen function», answers what write the read

observes; 𝑉 (𝑟) – answers what value the read observes
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