
Shenandoah GC
...and how it looks like in September 2017

Aleksey Shipilёv

shade@redhat.com

@shipilev

Disclaimers

This talk:

1. ...assumes some knowledge of GC internals: this is
implementors-to-implementors talk, not implementors-to-users –
we are here to troll for ideas

2. ...briefly covers successes, and thoroughly covers challenges:
mind the availability heuristics that can confuse you into
thinking challenges outweigh the successes

3. ...covers many topics, so if you have blinked and lost the thread
of thought, wait a little up until the next (ahem) safepoint

Slide 2/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview

Overview: Landscape

Slide 4/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: Landscape

Slide 4/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: Landscape

Slide 4/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: Landscape

Slide 4/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

fwdptr is attached to every object, at all times

Slide 5/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

fwdptr always points to most actual (to-space) copy, and gets
atomically updated during evacuation

Slide 5/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

Barriers maintain the to-space invariant:
«All writes happen into to-space copy»

Slide 5/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

Barriers also help to select the to-space copy for reading

Slide 5/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

Allows to update the heap references concurrently too

Slide 5/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: GC Cycle

Regular cycle:

1. Snapshot-at-the-beginning concurrent mark
2. Concurrent evacuation
3. Concurrent update references (optional)

Slide 6/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: GC Cycle

Regular cycle:
1. Snapshot-at-the-beginning concurrent mark

2. Concurrent evacuation
3. Concurrent update references (optional)

Slide 6/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: GC Cycle

Regular cycle:
1. Snapshot-at-the-beginning concurrent mark
2. Concurrent evacuation

3. Concurrent update references (optional)

Slide 6/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: GC Cycle

Regular cycle:
1. Snapshot-at-the-beginning concurrent mark
2. Concurrent evacuation
3. Concurrent update references (optional)

Slide 6/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Overview: GC Cycle

Regular cycle:
1. Snapshot-at-the-beginning concurrent mark
2. Concurrent evacuation
3. Concurrent update references (optional)

Slide 6/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Successes

Successes: Almost Concurrent Works!

LRUFragger, 100 GB heap, ≈ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 77260M->77288M(102400M) 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 0.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms

Pause Final Update Refs 85928M->85928M(102400M) 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms

Slide 8/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Successes: Almost Concurrent Works!

LRUFragger, 100 GB heap, ≈ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 77260M->77288M(102400M) 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 0.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms

Pause Final Update Refs 85928M->85928M(102400M) 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms

Slide 8/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Successes: Concurrent Means Freedom

Mostly concurrent GC is very liberating!

No rush doing concurrent phases: slow concurrent phase means
more frequent cycles ⇒ steal more cycles from application, not
pause it extensively

Heuristics mistakes are (usually) much less painful: diminished
throughput, but not increased pauses

Control the GC cycle time budget: -XX:ConcGCThreads=...

Slide 9/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Successes: Progress

Concurrent collector runs GC cycles without blocking mutator
progress (translation: BMU/MMU is really good)

That means, we can do:

...thousands of GC cycles per minute ⇒
Very efficient testing that surface the rarest bugs

...continuous GC cycles when capacity is overwhelming ⇒
Ultimate sacrifice of throughput for latency

...periodic GCs without significant penalty ⇒
Idle applications get their floating garbage purged

Slide 10/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Successes: Non-Generational Workloads

Shenandoah does not need Generational Hypothesis to hold true
in order to operate efficiently

Prime example: LRU/ARC-like in-memory caches

It would like GH to be true: immediate garbage regions can be
immediately reclaimed after mark, and cycle shortcuts

Partial collections may use region age to focus on «younger»
regions

Slide 11/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Successes: Barriers Injection

Educated Bystander concern:
Where to inject the barriers?

Reality:

Most heap accesses from VM are done via native accessors

Most VM parts (e.g. compilers) hold on to JNI handles

A very few naked reads and stores are done

Story gets much better with JEP 304 «GC interface»

Internal heap verification helps to catch missing barriers

Slide 12/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Successes: Heap Management

Regionalized heap allows (un)committing individual regions

Some are willing to trade increased peak footprint for better idle
footprint: per-region heap uncommit + periodic GCs

Slide 13/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Successes: Releases

Easy to access (development) releases: try it now!

Development in separate JDK 10 forest, regular backports to
separate JDK 9 and 8u forests

JDK 8u backports ship in RHEL 7.4+, Fedora 24+

Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk:10-shenandoah \

java -XX:+UseShenandoahGC -Xlog:gc -version

Slide 14/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges

Challenges: Footprint Overhead

Shenandoah requires additional word per object
for forwarding pointer at all times

1.5x worst case and 1.05-1.10x average overhead – but, counted
in Java heap, not native structures – easier capacity planning

Current pointer is uncompressed, no gain to compress due to
object alignment constraints

Moving fwdptr into synthetic object field promises substantial
improvements – but, read barriers are already very overheady

Slide 16/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: Barriers Overhead

Shenandoah requires much more barriers

1. SATB barriers for regular cycles

2. Write barriers on all stores, not only reference stores

3. Read barriers on almost all heap reads

4. Other exotic flavors of barriers: acmp, CAS, clone, ...

Slide 17/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: Read Barriers

Read Barrier: dereference via fwdptr

mov -0x8(%r10),%r10 # obj = *(obj - 8)

read the field at offset 0x30

mov 0x30(%r10),%r10d # val = *(obj + 0x30)

Very simple: single instruction

Very frequent: before almost every heap read

Optimizeable: move heap accesses ⇒ move the barriers

Accounts for 0..15% throughput hit, depending on the workload

Slide 18/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: Write Barriers

Read TLS flag and see if evac is enabled

movzbl 0x3d8(%r15),%r11d # flag = *(TLS + 0x3d8)

test %r11d,%r11d # if (flag) ...

jne OMG-EVAC-ENABLED # No, no, no!

Not enabled: read barrier

mov -0x8(%rbp),%r10 # obj = *(obj - 8)

Store into the field!

mov %r10,0x30(%r10) # *(obj + 0x30) = r10

Slide 19/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: Write Barriers

Read TLS flag and see if evac is enabled

movzbl 0x3d8(%r15),%r11d # flag = *(TLS + 0x3d8)

test %r11d,%r11d # if (flag) ...

jne OMG-EVAC-ENABLED # No, no, no!

Not enabled: read barrier

mov -0x8(%rbp),%r10 # obj = *(obj - 8)

Store into the field!

mov %r10,0x30(%r10) # *(obj + 0x30) = r10

Writing to field? Locking on object? Computing identity hash code?
Writing down new klass? All those are object stores, all require WB

Slide 19/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: Write Barriers

Read TLS flag and see if evac is enabled

movzbl 0x3d8(%r15),%r11d # flag = *(TLS + 0x3d8)

test %r11d,%r11d # if (flag) ...

jne OMG-EVAC-ENABLED # No, no, no!

Not enabled: read barrier

mov -0x8(%rbp),%r10 # obj = *(obj - 8)

Store into the field!

mov %r10,0x30(%r10) # *(obj + 0x30) = r10

Writes are rare, fast-path is fast, throughput overhead is 0..5%

Slide 19/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: Exotic Barriers

Shenandoah-specific barriers: making sure comparisons work
when both copies of the object are reachable.

Unequal machine ptrs ̸= unequal Java references now!

acmp barrier: on comparison failure, do RBs, compare again

Java ref comparisons in native VM code have to do it too

CAS barrier: on CAS failure, do magic to dodge false positives

Normally cost < 1% throughput

Slide 20/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: Compiler Support

The key thing to cope with barriers overhead is
Shenandoah-specific compiler optimizations

(this is also the major source of interesting bugs)

Hoisting read and write barriers out of the loops

Eliminating barriers on known new objects, known constants

Bypassing read barriers on unordered reads, e.g. final-s

Optimizeable barriers straight in IR

Coalescing barriers: SATB+WB, back-to-back barriers, etc

Slide 21/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: Compiler Support1

C1 C2

Test G1 Shen %diff G1 Shen %diff

Cmp 79 74 -7% 127 121 -5%

Cpr 125 86 -31% 146 125 -15%

Cry 79 63 -21% 232 227 -2%

Drb 78 70 -11% 165 156 -6%

Mpa 31 21 -33% 50 40 -19%

Sci 42 31 -25% 74 66 -10%

Ser 1639 1279 -22% 2471 2101 -15%

Sun 99 75 -24% 112 98 -13%

Xml 89 70 -21% 190 170 -11%

C1 codegens good barriers, but C2 also does high-level optimizations

1Caveat: Author made this experiment while inebriated after conference dinner, so...
Slide 22/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Challenges: STW Woes

Pauses ≈ 1 𝑚𝑠 leave little time budget to deal with,
but need to scan roots, cleanup runtime stuff, walk over regions...

Consider:

Thread wakeup latency is easily more than 200 𝑢𝑠: parallelism
does not give you all the bang – some parallelism is still efficient

Processing 10K regions means taking 100 𝑛𝑠 per region.
Example: you can afford marking regions as «dirty», but cannot
afford actually recycling them during the pause

Slide 23/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress

In Progress: VM Support

Pauses 6 1 𝑚𝑠 require more runtime support

Some examples:

Time-To-SafePoint takes about that even without loopy code

Safepoint auxiliaries: stack scans for method aging takes
> 1 𝑚𝑠, cleanup can easily take ≫ 1 𝑚𝑠

Lots of roots, many are hard/messy to scan concurrently or in
parallel: StringTable, synchronizer roots, etc.

Slide 25/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Partials

Full heap concurrent cycle takes the throughput toll on application.
Idea: partial collections!

Requires knowing what parts of heap to scan for incoming refs
Card Table for Serial, Parallel, CMS
Card Table + Remembered Sets for G1

Differs from regular cycle: selects the collection set without prior
marking, thus more conservative

Generational is the special case of partial

Slide 26/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Partials, Connection Matrix

Concurrent collector allows for very coarse «connection matrix»:

Slide 27/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Partials, Connection Matrix

Concurrent collector allows for very coarse «connection matrix»:

Slide 27/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Partials, Connection Matrix

Concurrent collector allows for very coarse «connection matrix»:

Slide 27/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Partial, Status

Current partial machinery does work!

Implemented GC infra, and matrix barriers in all compilers

Can use timestamps to bias towards younger and older regions

Caveat, they are STW in current experiment:

GC(7) Pause Partial 2103M->2106M(10240M) 4.209ms

GC(7) Concurrent cleanup 2106M->59M(10240M) 5.288ms

Anecdote: sometimes, partial STW is shorter than regular STWs

Slide 28/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Concurrent Partial

Next step:
making partial collections concurrent

(work in progress)

Q: Matrix consistency during concurrent partial?
Q: New barriers required?
Q: Regular concurrent cycle is the special case of partial?

Slide 29/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Traversal Order

Spot the trouble:

Slide 30/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Traversal Order

Spot the trouble:

Separate marking and evacuation phases mean collector maintains
the allocation order, not the traversal order

Slide 30/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Traversal Order

Spot the trouble:

Q: Can coalesce evacuation and update-refs?
Q: Concurrent Partial can coalesce the phases?

Slide 30/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Humongous and 2𝐾 allocs

new byte[1024*1024] is the best fit for regionalized GC?

Actually, in G1-style humongous allocs, the worst fit: objects
have headers, and 2𝐾-sized alloc would barely not fit, wasting
one of the regions

Q: Can be redone with segregated-fits freelist maintained separately?

Slide 31/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: Application Pacing

Concurrent collector GC relies on collecting faster than applications
allocate: applications always see there is available memory

In practice, this is frequently true: applications rarely do
allocations only, GC threads are high-priority, there enough
space to absorb allocations while GC is running...

In some cases of overloaded heap, application outpaces GC,
yielding Allocation Failure, and prompting STW

Q: Pace the application when heap is close to exhaustion?

Slide 32/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

In Progress: SATB or IU

SATB overestimates liveness:
all new allocations during mark are implicitly live

Keeps lots of floating garbage that would need to wait for
another cycle to be collected

Has interesting implications on weak references processing: e.g.
deadly embracing Reference.get()...

Q: Is incremental update more suitable here?

Slide 33/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

Conclusion

Conclusion: Ready for Experimental Use

Try it.

Break it.

Report the successes and failures.

https://wiki.openjdk.java.net/display/shenandoah/Main

Slide 35/35. «Shenandoah GC», Aleksey Shipilёv, 2017, D:20171002122223+02’00’

https://wiki.openjdk.java.net/display/shenandoah/Main

	Overview
	Successes
	Challenges
	In Progress
	Conclusion

